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Abstract— In this work, we develop a control algorithm for
mobile manipulators manipulating an object within a leader-
follower framework. Unlike existing literature, we avoid the
knowledge of the object’s dynamics, and only the leader is
aware of the tasks to be executed by the object. The followers
are primarily tasked to lift the object and maintain a desired
posture while the leader manipulates the object despite its
unknown dynamic parameters. We employ a stiffness-based
controller for the followers, allowing set-point stabilisation with
permissible flexibility and a high-gain prescribed performance
controller for the leader to facilitate manipulation from the
object’s equilibrium state. We present simulation results with
two followers and one leader KUKA youbots to validate our
proposed framework.

I. INTRODUCTION

The cooperative manipulation problem involves manipu-
lating a payload when a single agent is unable to carry the
object alone. Such an approach offers advantages but also
introduces certain challenges, including coordinating motion
among robots, evenly distributing the load, performing de-
centralised planning, and translating high-level tasks for the
object into low-level tasks for individual joint angles. The
problem becomes more structured when there is a hierarchy
among the robots, allowing some agents to assume greater
leadership roles in the tasks. Such a leader-follower frame-
work emerges naturally in various scenarios of cooperative
manipulation. For instance, a leader agent might (i) possess
powerful actuators enabling it to lift heavier payloads, (ii)
be equipped with a greater number of degrees of freedom,
(iii) have comprehensive knowledge of the environment and
the locations of obstacles, or (iv) have access to the desired
tasks — which is the focus of this study.

The premise of this work is thus to explore the cooperative
manipulation of an object when only a subset of the agents
are aware of the desired tasks associated with the object.
For instance, a task could involve picking and placing an
object within specific timing constraints. We refer to these
tasks as spatio-temporal tasks, which impose both spatial and
temporal requirements. By allocating the task knowledge to
a specific subset of agents, we enable the remaining agents to
dedicate themselves to other secondary but important tasks,
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Fig. 1: Two mobile manipulators grasping an object

such as helping to carry the payload. In our approach, the
follower agents are responsible for lifting the object and
compensating for its gravity, whereas the leader agent is
charged with manipulating the object according to specified
requirements. Nevertheless, we proceed under the assump-
tion that there is no knowledge of the dynamical terms of
the robots and the object, and we abstain from using force
measurements to identify any external forces exerted by the
leader agents. The control challenge is divided into designing
a controller for the follower agents to compensate for the
object’s gravitational forces and for the leader agent to guide
the object along a desired trajectory. We consider mobile
manipulators as they allow for larger workspace accessibility
and enable the utilisation of redundant degrees of freedom
to perform secondary tasks for the mobile bases.

In this regard, our approach unfolds as follows: We first
design a decentralised stiffness controller for each follower
agent to compensate for the object’s gravitational forces. This
controller incorporates adaptive gravity compensation for the
object since its mass is unknown to the agents. Addition-
ally, a decentralized controller is not associated with real-
time problems, such as channel overload or latency, which
can arise over a communication network. Consequently, it
enables the follower-object agents system to behave like a
mass-spring-damper system, which a leader agent can then
manipulate. To this end, we develop a prescribed perfor-
mance control (PPC) for the leader agent, which is tasked
with enforcing spatio-temporal constraints on the object. The
contributions of this work are stated as follows: (i) We
design a novel controller enabling followers to cooperatively
manipulate an object, along with a mechanism for the leader
to perform trajectory tracking; (ii) We introduce a robust
framework for the leader-follower configuration that facili-
tates the transportation of the object, implemented without
requiring full knowledge of the dynamical properties of the
system; and (iii) We finally present simulation results to
validate the proposed framework.



The rest of the paper is organized as follows: Section
II presents the related literature, followed by notations in
Section III. The problem formulation, along with system
dynamics and control design, is presented in Section IV.
Section V presents the main results, and Section VI show-
cases simulation results to validate the proposed framework.
Finally, the conclusion is provided in Section VII.

II. RELATED WORK

We review the literature in three categories that contribute
to our discussions later: adaptive control with gravity com-
pensation, compliant control of cooperative manipulators,
and the enforcement of spatio-temporal constraints within
compliant manipulators.

A foundational approach in robotics has been the pa-
rameterisation of unknown system dynamics coupled with
adaptive control. Studies spanning from the early 1980s,
such as [1], [2], and [3], to more recent contributions like
[4], illustrate the evolution of adaptive control for robotics
manipulators. However, parameterising the entire dynamics
does come with the cost of increased computational demands
and poor performance. An alternative is to only parameterise
the gravity terms and use a Proportional-Derivative (PD)
controller, such as [5] presented for a single manipulator
setting. Works such as [6] and [7] study compliant control
for manipulators both in a single-agent and a multi-agent
setting. However, such methods require and make use of
the knowledge of the centrifugal and Coriolis terms of the
system. Impedance control of manipulators, studied in [8]
and [9], shapes the impedance behaviour of a system, often
involving either the acceleration measurements or the mea-
surements of the external forces. This could be circumvented
by designing a force estimator [10] or treating the forces
as disturbances and designing a disturbance observer [11]–
[13], still requiring, however, the knowledge of the dynamical
terms.

Closely related problems were studied in [14], [15] and
[16]. In [14], the authors used an inverse dynamics con-
troller to design an impedance control scheme along with
an estimation law to estimate the leader’s intention. In
[15], an impedance controller and a wrench estimator are
designed to capture the human’s intention in transporting
the object. The assumption of knowing the inertial and
Coriolis terms of agents and object is made in both the
above works such that the controller is able to shape the
dynamics in a satisfactory manner. In [16], the authors study
the cooperative manipulation problem using adaptive control,
where all the robots work cooperatively to track the reference
trajectory. The dynamics of the system are parameterised,
and redundancy resolution is discussed.

In our previous work, [17], we explored cooperative ma-
nipulation in a homogenous group of agents where every
agent knew the desired satisfactory tasks. Unlike the liter-
ature discussed above, here, we work with mobile manip-
ulators, restrict the knowledge of tasks to only a subset of
agents and are able to enforce transient constraints without
the knowledge of the dynamical terms of the system.

III. NOTATIONS

The set of real numbers are denoted by R and the set of
natural numbers by N. With n,m ∈ N, Rn is the set of n-
coordinate real-valued vectors, Rn×m represent matrices of
size n×m with real numbers and R+ is the set of positive
real number. By 0n×m we denote a matrix of size n × m
with all 0 elements. For a, b ∈ R3, S(a) denotes a skew-
symmetric matrix defined as S(a)b = a× b, where × is the
vector-cross product operator. We denote by T3 the 3D torus.

IV. PROBLEM STATEMENT

In this section, we begin by presenting the system dynam-
ics followed by the proposed problem statement. The system
dynamics encompass the dynamics of the follower agents,
the leader agents, the object, the coupled follower-object
dynamics, and the coupled leader-follower-object dynamics.

A. System Dynamics

Let the total number of agents be N = Nf+Nl where Nf
represents the number of follower agents, and Nl represents
the number of leader agents. Each agent consists of ni ≥ 6
joint-space variables qi ∈ Rni . The pose of the ith end-
effector, xi = [p⊤i , η

⊤
i ]

⊤ is the operational space pose,
and vi = [ṗ⊤i , ω

⊤
i ]

⊤ is the operational space velocity. The
pose comprises the position pi ∈ R3 and the Euler angles
ηi ∈ T3, while the velocity vi consists of the rate of change
of position ṗi ∈ R3 and the angular velocity ωi ∈ R3. The
differential kinematics vi = Ji(qi)q̇i relate the joint angle
rate to the operational space velocity with the kinematic
Jacobian Ji(qi) : Rni → R6×ni .

The operational space agent dynamics is given by [18],

Mi(qi)v̇i + Ci(qi, q̇i)vi + gi(qi) = ui − hi (1)

where Mi : Rni → R6×6 is the positive-definite inertia
matrix, Ci : R2ni → R6×6 is the Coriolis matrix, gi : Rni →
R6 is the gravity vector, ui ∈ R6 is the input wrench at the
end-effector and hi ∈ R6 is the generalised force exerted
on the environment by the end-effector. To convert the input
wrench at the end-effector into the applied torques for each
actuator of the robot, we utilize the following relationship:
τi = Ji(qi)

⊤uiwhere τi ∈ Rni . The agent dynamics can be
written in vector form as,

Mf (q)v̇f + C(q, q̇)vf + gf (q) = uf − hf (2)

for the follower agents and

Ml(q)v̇l + C(q, q̇)vl + gl(q) = ul − hl (3)

for the leader agents. Here M{f,l} = diag([Mi]) ∈
R6N{f,l}×6N{f,l} , C{f,l} = diag([Ci]) ∈ R6N{f,l}×6N{f,l} ,
g{f,l} = [g⊤1 , . . . , g

⊤
N{f,l}

]⊤ ∈ R6N{f,l} , u{f,l} =

[u⊤1 , . . . , u
⊤
N{f,l}

]⊤ ∈ R6N{f,l} , and h{f,l} =

[h⊤1 , . . . , h
⊤
N{f,l}

]⊤ ∈ R6N{f,l} .
The pose and velocity of the object’s centre of mass

are denoted by xo = [p⊤o , η
⊤
o ]

⊤ and vo = [ṗ⊤o , ω
⊤
o ]

⊤,
respectively. The velocity is related to the rate of change of
position by vo = Jor (xo)ẋo where Jor : R3 × T3 → R6×6



is the object representation Jacobian. The object’s dynamics
are,

Mo(xo)v̇o + Co(xo, vo)vo + go = ho (4)

where Mo : R3 × T3 → R6×6 is the positive-definite inertia
matrix, Co : R3 × T3 × R6 → R6×6 is the Coriolos matrix,
go : R3 ×T3 → R6 is the gravity vector and ho ∈ R6 is the
force acting on the objects centre of mass.

We consider rigid grasps in this work, which gives rise to
the relationship

pi = po + pi/o, ηi = ηo + ηi/o (5)

where pi/o and ηi/o are the constant position and orientation
offsets among the ith end-effector and the object’s center
of mass. Without the leader, the coupled follower-object
dynamics is given by balancing the forces the followers exert
on the object at grasping points to the forces experienced
by the object’s centre of mass, i.e., ho = G⊤

f hf where
Gf : RniNf → R6Nf×6 is the grasp matrix. The grasp matrix
Gf = [J⊤

o1(q1), . . . , J
⊤
onf

(qnf
)]⊤ is composed of the object

to the ith agent Jacobian Joi(qi) : Rni → R6×6 given by,

Joi(qi) =

[
I3 S(−pi/o(qi))

03×3 I3

]
. (6)

The resulting coupled follower-object dynamics are,

M̃f (q)v̇o + C̃f (q, q̇)vo + g̃f (q, q̇) = G⊤
f (q)uf (7)

where M̃f (q) = Mo(q) + G⊤
f (q)Mf (q)Gf (q), C̃f (q, q̇) =

Co(q, q̇) + G⊤
f (q)Mf (q)Ġf (q) + G⊤

f (q)Cf (q, q̇)Gf (q) and
g̃f (q, q̇) = go(q) +G⊤

f (q)gf (q).
Finally, the coupled leader-follower-object dynamics is

obtained by balancing the forces exerted both by the follower
agents and the leader agents on the object, i.e., ho = Gfuf+
Glul, resulting in,

M̃(q)v̇o + C̃(q, q̇)vo + g̃(q, q̇) = G⊤
f (q)uf +G⊤

l (q)ul (8)

where, M̃ = M̃f+GlMlG
⊤
l , C̃ = C̃f+GlMlĠ

⊤
l +GlClG

⊤
l

and g̃ = g̃f +G⊤
l gl.

B. Signal Temporal Logic (STL)

We consider that the spatio-temporal task assigned to the
multi-robot system is expressed via signal temporal logic
(STL) specifications1. STL is a predicate-based logic that
allows for continuous-time spatial and temporal constraints
[19]. Consider the following fragment of the STL syntax,

ψ ::= ⊤ | µ (9a)
ϕ ::= ψ | G[a,b]ψ | F[a,b]ψ | ϕ1 ∧ ϕ2 (9b)

where ϕ1, ϕ2 are STL formulas of the form ϕ, b ≥ a ≥ 0
and µ is a predicate of the form µ : Rn×R≥0 → B defined
via a predicate function p : Rn × R≥0 → R as

µ =

{
⊤ p(x, t) ≥ 0

⊥ p(x, t) < 0
. (10)

1the proposed framework can accommodate other types of task models.

The satisfaction relation of a continuous-time signal x :
R≥0 → Rn represented by (x, t) |= ϕ indicates that signal
x satisfies ϕ at time t and is defined recursively as follows:

(x, t) |= µ ⇔ p(x, t) ≥ 0

(x, t) |= ϕ1 ∧ ϕ2 ⇔ (x, t) |= ϕ1 ∧ (x, t) |= ϕ2

(x, t) |= G[a,b]ψ ⇔ ∀t1 ∈ [t+ a, t+ b]s.t.(x, t1) |= ψ

(x, t) |= F[a,b]ψ ⇔ ∃t1 ∈ [t+ a, t+ b]s.t.(x, t1) |= ψ

STL can express constraints such as ’Let the signal x be
ϵ−close to point A in the entire time interval [5, 10]s and
let the signal x be ϵ−close to point B sometime in the time
interval [10, 15]s’, with the following formula,

ϕ = G[5,10]

(
∥x−A∥ ≤ ϵ

)
∧ F[10,15]

(
∥x−B∥ ≤ ϵ

)
for some ϵ > 0.

The setup includes having both follower and leader agents
as mobile manipulators, consisting of both a mobile base
and a manipulator arm. This arrangement provides us with
redundant degrees of freedom, allowing for the prescription
of additional tasks in the redundant directions. The problem
then is to design uf and ul, such that the object satisfies a
user-defined STL formula. More formally,

Problem 1: Consider a system comprising N = Nf +
Nl agents and a spatio-temporal tasks encoded via an STL
formula ϕ. Design a decentralised stiffness controller, uf ∈
R6Nf , enabling the follower agents to lift the rigidly grasped
object. Concurrently, design a controller ul ∈ R6Nl for the
leader agents, ensuring that it can effectively manipulate the
object to satisfy ϕ.

V. MAIN RESULTS

The solution approach we adopt is outlined as follows:
(A) Design an adaptive update law for the followers to

compensate for the object’s gravity vector go.
(B) Design uf for the follower agents such that the dynam-

ics (7) take the following form,

M̃f v̇o + (C̃f +Kv)vo − J−1
or Kx∆xe = 0 (11)

where Kx and Kv are the desired stiffness and damping
matrices, respectively, and ∆xe denotes a position error
to be specified later. This allows the follower-object
system to behave like a mass-spring-damper system,
allowing us to exert forces on a virtual spring with the
desired stiffness and damping properties.

(C) Develop the implementation of uf to map to joint
torques τf , considering the redundant degrees of free-
dom inherent in the mobile manipulator.

(D) Design a suitable controller ul for the leader to impose
the desired spatio-temporal tasks on the object.

A. Adaptive Gravity Compensation

The gravity vector go of the object can be parameterised
as [2],

go = Yoγo (12)



where Yo is a known regressor matrix and γo is the unknown
parameter vector. Define the adaptive update law as

˙̂γo = −ΓYovo (13)

where Γ is a diagonal matrix composed of positive parame-
ters.

B. Follower-Only Controller Design

We are now ready to design the controller uf for the
follower agents with the goal to shape the dynamics (7) into
(11) in order to stabilise the object’s position xo around a
time-varying desired pose xod , with the error represented
by ∆xe = xod − xo. We select xodas an exponential
moving average of xo, governed by the stable dynamics
τ ẋod + xod = xo where τ is a positive time constant.
This formulation of the error will allow the follower-object
system to function akin to a mass-spring-damper system
around the equilibrium point xod . By establishing such a
moving average, we aim to ensure that the object stabilises
around this point in the absence of external forces applied by
the leader agent. Such a low pass filter provides robustness
and a degree of compliance to external disturbances. We
now design the stiffness-based adaptive controller for the
followers as follows:

uf = gf +G+
f (Yoγ̂o + J−1

or Kx∆xe −Kvvo) (14)

where G+
f = [J−1

o1 (q1), . . . , J
−1
oN (qNf

)] ∈ R6Nf×6.
Note that we employ a stiffness-based controller rather

than an impedance-based controller. The rationale for this
choice stems from the fact that impedance control requires
shaping the desired inertia matrix, a task generally avoided
due to the complexity of designing and calculating the inertia
matrix. Furthermore, impedance control requires measuring
the object’s acceleration, which tends to be a highly noisy
signal or requires measuring external wrenches [6]. Now,
we are ready to prove the stability of the follower-object
system. This proof is necessary because, when the leader is
not manipulating the object, we require the follower-object
system to still stabilise around the pose where the leader last
released the object.

Theorem 1: Consider Nf followers rigidly grasping an
object with the coupled dynamics (7). Then, under the
adaptive control law (14) and the estimation update law (13),
the object pose xo is asymptotically stabilised around the
pose xod .

Proof: We first construct the following positive-definite
Lyapunov function candidate

V =
1

2
v⊤o M̃fvo +

1

2
γ̃oΓ

−1γ̃o +
1

2
∆x⊤e Kx∆xe (15)

where γ̃o = γo − γ̂o is the estimation error vector. Taking
the time derivative of the above candidate function,

V̇ = v⊤o M̃f v̇o +
1

2
v⊤o

˙̃Mfvo + γ̃oΓ
−1 ˙̃γo +∆x⊤e Kx∆ẋe

= v⊤o (Gfuf − Yoγo −Gfgf ) +
1

2
v⊤o (

˙̃Mf − 2C̃f )vo+

γ̃oΓ
−1 ˙̃γo +∆x⊤e Kx∆ẋe

Now note that, ˙̃γo = ˙̂γo, ∆ẋe = ẋod − ẋo = −∆xe

τ −J−1
or vo,

and, ˙̃Mf − 2C̃f is skew-symmetric [3]. Hence,

V̇ =v⊤o (Gfuf − Yoγo −Gfgf − J−1
or Kx∆xe)+

γ̃oΓ
−1 ˙̂γo −∆x⊤e

Kx

τ
∆xe

Furthermore, using (14) and (13) in the above equation, we
obtain the bound as follows,

V̇ = v⊤o (Yoγ̂o − Yoγo) + γ̃⊤o Yovo − v⊤o Kvvo −∆x⊤e
Kx

τ
∆xe

= −v⊤o Kvvo −∆x⊤e
Kx

τ
∆xe ≤ 0.

The above function is negative semi-definite and vanishes if
and only if vo = 0 and ∆xe = 0. By applying the Lasalle
invariance principle [20], the theorem is proved.
The controller (14) is decentralised due to the grasp matrix
term G+

f , and follower each agent i implements its corre-
sponding

ufi = gfi + J−1
oi (Yoγ̂o + J−1

or Kx∆xe −Kvvo).

Also, observe that we can choose small gains for Kx and
Kv as we do not enforce strict trajectory tracking require-
ments with respect to xod . Other approaches, such as solely
performing gravity compensation on the object, could result
in the object moving indefinitely once the leader releases
it. Alternatively, defining a static setpoint might force the
object to return to this fixed point after manipulation, which
undermines the task being performed. A more natural choice
is to allow the object to stabilize around the point where the
leader last released it; this rationale motivates the design of
the desired position as an exponential moving average. By
doing this, we also enforce a certain degree of compliance
in the system. Additionally, in the simulations, we observed
that the adaptive estimate of the object’s mass, γ̂o = m̂o,
actually converges to 1/Nf -th of the original estimate. This
makes intuitive sense as we expect all the Nf followers to
share the load equally; proving this relationship is part of the
future work. Next, we will explore how to implement such
a controller on mobile manipulators and also how to exploit
the redundant degrees of freedom natural to such robots.

C. Implementation of Follower Controller

Here, we demonstrate how to distribute the input wrench
into torques for the mobile base and the manipulator. Define
Bipi ∈ R6 (see Figure 1) as the pose vector of the end-
effector {Ei} in the frame of the mobile base {Bi}. Partition
the joint-space states into those pertaining to the mobile
base and those belonging to the manipulator. Denote ni =
nbi + nmi , where nbi represents the degrees of freedom of
the mobile base, and nmi represents the degrees of freedom
of the manipulator. The torques τi = [(τ bi )

⊤, (τmi )⊤]⊤ and
the Jacobian Ji = [Jbi , J

m
i ] are partitioned into components

associated with the base and the manipulator, respectively.
To utilize the redundant degrees of freedom provided by
the mobile manipulator, we employ the null-space projection
of the Jacobian [21]. Through the null space, we facilitate



the motion of the base without affecting the motion of the
end-effector. The intuition is to enable the base to follow
the object by detecting changes only in the Bipi vector.
By implementing such a strategy, the entire follower-object
structure would detect changes in the position of the end-
effector and compensate individually by generating motions
in the null space. The implementation we propose is,

τi = J⊤
i ui + (I − J+

i Ji)

[
τbi

0n
m
i ×1

]
where J+

i is the pseudo-inverse and τbi ∈ Rnb
i is the mobile

base controller given by,

τbi = −JbiKbx(
Bipdi −Bi pi).

Here, Kbx is a positive-definite gain matrix and Bipdi rep-
resents the desired pose of the end-effector. In this work,
we have chosen this vector to correspond to the pose at the
initial grasp. This approach ensures that the base tracks the
movement of the object in response to any external forces
applied to the end-effector, allowing for the coordinated
movement of the entire follower-object assembly through this
localized implementation of the base controller.

D. Leader Controller Design

The leader is primarily responsible for manipulating the
object such that it satisfies the given spatio-temporal task
encoded by ϕ. An efficient way to achieve this is by
employing Prescribed Performance Control (PPC) [22]. PPC
offers a methodology for imposing pre-defined transient and
steady-state constraints in the system trajectory. In particular,
it confines a tracking error e(t) within predefined regions
whose boundaries are defined by time-dependent functions
±γ(t), called performance functions. The mathematical defi-
nition of such regions is given by −γ(t) < e(t) < γ(t). Note
that such inequalities naturally encode spatio-temporal con-
straints, which motivates us to employ the PPC methodology
for the accommodation of the given STL task. In particular,
one can define a desired reference pose trajectory xd(t), the
associated error

ex = [epx, . . . , eψ]
⊤ = xo − xd (16)

and exponentially-decaying performance functions γx(t) =
diag(γpx, γpy, γpz, γϕ, γθ, γψ) and γxi(t) = (γ0xi

−
γ∞xi

) exp(−lt)+γ∞xi
with γ0xi

> |exi
(0)|, such that −γxi

(t) <
exi

(t) < γxi
(t) implies the satisfaction of the STL task ϕ.

This is accomplished by appropriately tuning the decaying
rate constants l ∈ R+ and final converging value γ∞xi

. More
information can be found in our previous work [17].

For the exposition below, we focus on the scenario involv-
ing a single leader, i.e., Nl = 1. However, the findings are
extendable to scenarios in which multiple leaders cooperate
with each other.

Using (14), the leader-follower-object dynamics takes the
form,

M̃v̇o+(C̃+Kv)vo+(go−Yoγ̂o)+G⊤
l gl−J−1

or Kx∆xe = G⊤
l ul.

(17)

The goal now is to design the leader controller ul so that
a desired spatio-temporal task on the object is enforced by
achieving the PPC specifications.

Step I: Define the normalised errors ξx ∈ R6 by,

ξx = [ξpx, . . . , ξψ]
⊤ = γ−1

x (t)ex(t) (18)

and design the reference velocity as

vr(t) = −c1Jorγ−1
x (t)rx(ξx)εx(ξx) (19)

where c1 is a positive constant and the signals εx :
(−1, 1)6 → R6 and rx : (−1, 1)6 → R6×6 are εx(ξx) =
[εpx, . . . , εψ] and rx(ξx) = diag([ri]i∈{px,...,ψ}), with,

εxi
= ln

(1 + ξxi

1− ξxi

)
, rxi =

2

1− ξ2xi

, i ∈ {px, py, pz, ϕ, θ, ψ}.

Step II: Define the velocity error ev ∈ R6 as,

ev = [evx, . . . , eωz
]⊤ = vo − vr (20)

where vo = [ṗ⊤o , ω
⊤
o ]

⊤ ≡ [vx, vy, vz, ωx, ωy, ωz]
⊤.

Let the velocity performance functions γv(t) =
diag(γvx, γvy, γvz, γωx

, γωy
, γωz

) and γv(t) =
(γ0v − γ∞v ) exp(−lt) + γ∞v with γ0v > |ev(0)|. Choose
l ∈ R+ and γ∞v such that the desired velocity constraints
are satisfied if −γv(t) < ev(t) < γv(t) holds.

Step III: Define the normalised errors ξv ∈ R6 by,

ξv = [ξvx, . . . , ξωz ]
⊤ = γ−1

v (t)ev(t) (21)

and design the control law in (17) as

ul(t) = −c2J−1
ol
γ−1
v (t)rv(ξx)εv(ξv) (22)

where Jol is the object to leader Jacobian, c2 is a positive
constant and the signals εv : (−1, 1)6 → R6 and rv :
(−1, 1)6 → R6×6 are εv(ξv) = [εvx, . . . , εωz ] and rv(ξv) =
diag([ri]i∈{vx,...,ωz}), with,

εvi = ln
(1 + ξvi
1− ξvi

)
, rvi =

2

1− ξ2vi
, i ∈ {vx, vy, vz, ωx, ωy, ωz}.

Before we demonstrate that the proposed control scheme
ensures the containment of trajectories within the designated
performance functions, we will state the following assump-
tion.

Assumption 1: The object’s pose does not result in a
singular Jor (xo(t)), i.e. θo(t) ∈ [−θ̄, θ̄], for all t ≥ 0, with
θ̄ ∈ (0, π2 ).

Theorem 2: Consider a leader-follower system rigidly
grasping an object with coupled dynamics (8) and subject
to spatio-temporal tasks requiring xo to track a desired
trajectory xd under timing constraints. Then the controller
(22) guarantees −γx(t) < ex(t) < γx(t) for all t ≥ 0, and
the boundedness of all closed loop signals.

Proof: Consider first the dynamics of the normalised
error ξ̇x = γ−1

x (ėx− γ̇xξx), which after using (18), (19) and
(20) becomes,

ξ̇x = fx(ξx, t) =

− c1∥εxrxγ−1
x ∥ − ε⊤x rxγ

−1
x (γ̇xξx − J−1

or γvξv). (23)



Define the open and nonempty set Ωξx ⊂ R6 with Ωξx =
(−1, 1)6. We proceed in two steps, first showing that there
exists a maximal solution ξx : [to, τmax) → Ωξx and then
showing that τmax = ∞. By choosing ξx(t0) as in Step
I above, we ensure that ξx(t0) ∈ Ωξx . Notice also that
fx(ξx, t) is continuous in t and locally Lipschitz in ξx over
Ωξh . Therefore, [23, Theorem 54] yields the existence of a
maximal solution ξx : [t0, τmax) → Ωξx . Thus,

ξx(t) =
exi

(xo, t)

γxi(t)
∈ (−1, 1). (24)

∀i ∈ {px, py, pz, ϕ, θ, ψ}, t ∈ [t0, τmax) from which we
conclude exi

(t) is bounded by γxi
(t). Consider now the

positive-definite and radially unbounded function Vx(εx) =
1
2ε

⊤
x εx. The time derivative of Vx is,

V̇x = ε⊤x (ξx)rx(ξx)ξ̇x

≤ −c1∥εxrxγ−1
x ∥2 − ε⊤rxγ

−1(γ̇xξx − J−1
or γvξv)

In the second term above, we have ξx ≤
√
6 and ξv ≤

√
6,

γv and γ̇x are bounded for all t ≥ 0 by construction, and
J−1
or is bounded due to Assumption 1 and due its continuity.

All these bounds are also independent of τmax. Hence V̇x
reduces to

V̇x ≤ −c1∥εxrxγ−1
x ∥2 + ∥εxrxγ−1

x ∥B̄x
where B̄x ≥ ∥γ̇xξx−J−1

or γvξv∥ and is independent of τmax.
Therefore, we can conclude V̇x < 0 ⇔ ∥εxrxγ−1

x ∥ > B̄x

c1
,

which, by noting rxi
> 2, is equivalent to,

V̇x < 0 ⇔ ∥εx(ξx)∥ >
B̄xmax{γx(t0)}

c1
.

Therefore, it holds that ∥εx(ξx)∥ ≤ ε̄x, where

ε̄x = max
{
∥εx(ξx(t0))∥,

B̄xmax{γx(t0)}
c1

}
∀t ∈ [t0, τmax), and taking the inverse logarithm,

−1 <
exp(−ε̄x)− 1

exp(−ε̄x) + 1
≤ ξx(t) ≤

exp(ε̄x)− 1

exp(ε̄x) + 1
< 1.

Hence, vr and consequently vo = γvξv+vr remain bounded
for all t ∈ [t0, τmax). We can proceed in a similar manner
defining the dynamics ξ̇v = fv(ξv(t)) and constructing
the function Vv = 1

2ε
⊤
v εv . Similar boundedness argument

follows for the following terms: (i) the matrix M̃ remains
bounded under Assumption 1, (ii) the adaptive update law
(13) is stable, (iii) the gravity vectors go, gl and gf come from
the partial derivative of the potential energy of the system
and are bounded [24, Property 2.8] (iv) ∆xe is an output
from a stable filter and is bounded. And we arrive at similar
bounds for εv , where ∥εv(ξv)∥ ≤ ε̄v , where

ε̄v = max
{
∥εv(ξv(t0))∥,

B̄vmax{γv(t0)}
c2λmin(M̃)

}
∀t ∈ [t0, τmax), where λmin(·) denotes the minimum eigen-
value; by invoking the inverse logarithmic function, we
obtain

−1 <
exp (−ε̄v)− 1

exp (−ε̄v) + 1
≤ ξv(t) ≤

exp (ε̄v)− 1

exp (ε̄v) + 1
< 1,

Follower 1 Follower 2

Leader 

x

yz

Fig. 2: Setup of 3 YouBots grasping an object.

for all t ∈ [t0, τmax), and hence the boundedness of the
proposed control law (22). To complete the proof, we observe
that ξx(t) and ξv(t) are in a compact subset of Ωx and Ωv .
Therefore, by [23, Prop. C.3.6], we conclude the forward
completeness of the solution and τmax = ∞.
Above, we developed a controller for a leader agent aimed
at fulfilling the spatio-temporal tasks associated with the
object. This controller is not required when a leader agent
is substituted by a human operating the object. The strength
of the framework developed herein lies in the decoupling of
the follower-object system from the leader system. Conse-
quently, the leader can be any entity that possesses knowl-
edge of the tasks imposed on the object being carried.

VI. SIMULATIONS

We conduct computer simulations using the realistic en-
vironment created by the Drake toolbox [25]. The mobile
manipulators under consideration are the KUKA YouBots,
which feature an omnidirectional mobile base and a 5-
degree-of-freedom manipulator arm equipped with a finger
gripper. Our simulation setup includes two follower agents
and one leader agent, along with a slab (of mass mo =
0.05[kg]) representing the object, as shown in Figure 2.
Let xo(t) = [p⊤o , η

⊤
o ]

⊤ denote the pose of the object’s
centre of mass, and the initial conditions are xo(0) =
[0, 0, 0.4, 0, 0, 0]⊤. The STL formula we impose on the object
here is,

φ =F[0,55]

(
∥po − [1, 1, 0.4]⊤∥ ≤ 3

)
∧

F[55,105]

(
∥po − [0, 1.414, 0.4]⊤∥ ≤ 3

)
∧

F[105,155]

(
∥po − [−1, 1, 0.4]⊤∥ ≤ 3

)
∧

F[155,205]

(
∥po − [−1.414, 0, 0.4]⊤∥ ≤ 3

)
∧

F[205,255]

(
∥po − [0, 0, 0.4]⊤∥ ≤ 3

)
∧

G[255,350]

(
∥po − [0, 0, 0.4]⊤∥ ≤ 3

)
.
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Fig. 3: Results pertaining to a simulation run of the setup in Figure 2.
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Fig. 4: Estimated mass of the object using (13).

Based on our previous work [17], the STL formula above
can be transformed into the following task explanation:

• The desired position po of the object should be
[1, 1, 0.4][m] at t1 = 55[s], (see Figure 5a),

• Next, the object’s desired position should be
[0, 1.414, 0.4][m] at t2 = 105[s], (see Figure 5b),

• Next, the object’s desired position should be
[−1, 1, 0.4][m] at t3 = 155[s], (see Figure 5c),

• Next, the object’s desired position should be
[−1.414, 0, 0.4][m] at t4 = 205[s], (see Figure
5d),

• And finally, the object should return to the initial
conditions at t5 = 255[s] (see Figure 5e) and stay there
until t6 = 350[s].

Only the leader is aware of the aforementioned tasks. The
error was defined as e(t) = po − pod where pod is the
desired position mentioned above. The position and velocity
performance functions were chosen as,

γ(t) = (15− 3) exp(−0.3(t− t∗)) + 3

where t∗ ∈ {0, 55, 105, 155, 205}[s]. The results are pre-
sented in Figure 3, and snapshots of the simulation envi-
ronment are depicted in Figure 5. In Figure 3a, we observe

the five funnels that enforce the desired transient constraints
on the object’s position error. It is noted that the errors are
contained within the funnels. Figure 3b illustrates the leader
control input (22), while Figure 3c displays the object’s
position as a solid line and the exponential moving average as
a dotted line. As can be seen, xod closely follows the original
position xo. In Figure 4, the follower agents implement the
adaptive law (13) to estimate the mass of the object. As can
be seen, the mass of the object converges to 0.025[kg] which
is half of the original mass. This is due to the fact that there
are two follower agents that share the load of the object
equally and, hence, arrive at this estimate.

VII. CONCLUSIONS

In this work, we presented a decentralized control algo-
rithm for addressing the cooperative manipulation problem
within the context of a leader-follower system framework.
We demonstrated the decoupling of the primary objective,
which involves fulfilling spatio-temporal tasks, from the
secondary objective of carrying the object. The primary
task is executed by the leader agent, equipped with a PPC
controller, whereas the secondary task is undertaken by the
follower agents, whose sole purpose is to help compensate
the object’s gravitational force. Furthermore, we provided
experimental validation of the proposed framework through
simulations involving KUKA YouBot robots.
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