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Abstract
This article presents MAPS2: a distributed algorithm that allows multi-robot systems to deliver coupled tasks expressed
as Signal Temporal Logic (STL) constraints. Classical control theoretical tools addressing STL constraints either adopt
a limited fragment of the STL formula or require approximations of min/max operators. Meanwhile, works maximising
robustness through optimisation-based methods often suffer from local minima, thus relaxing any completeness
arguments due to the NP-hard nature of the problem. Endowed with probabilistic guarantees, MAPS2 provides an
autonomous algorithm that iteratively improves the robots’ trajectories. The algorithm selectively imposes spatial
constraints by taking advantage of the temporal properties of the STL. The algorithm is distributed in the sense that each
robot calculates its trajectory by communicating only with its immediate neighbours as defined via a communication
graph. We illustrate the efficiency of MAPS2 by conducting extensive simulation and experimental studies, verifying the
generation of STL satisfying trajectories.

1 Introduction
Autonomous robots can solve significant problems when
provided with a set of guidelines. These guidelines can be
derived from either the physical constraints of the robot, such
as joint limits, or imposed as human-specified requirements,
such as pick-and-place objects. An efficient method of
imposing such guidelines is by using logic-based tools,
which enable reasoning about the desired behaviour of
robots. These tools help us describe the behaviour of a robot
at various levels of abstraction, such as interactions between
its internal components to the overall high-level behaviour
of the robot [Lamport, 1983]. This strong expressivity
helps us efficiently encode complex mission specifications
into a logical formula. Recent research has focused on
utilising these logic-based tools to express requirements
on the behaviour of robots. Once these requirements are
established, algorithms are developed to generate satisfying
trajectories. Such is the focus of our work.

Examples of logic-based tools include formal languages,
such as Linear Temporal Logic (LTL), Metric Interval
Temporal Logic (MITL), and Signal Temporal Logic (STL).
The main distinguishing feature between these logics is their
ability to encode time. While LTL operates in discrete-
time and discrete-space domain, MITL operates in the
continuous-time domain but only enforces qualitative space
constraints. On the other hand, STL allows for the expression
of both qualitative and quantitative semantics of the system
in both continuous-time and continuous-space domains
[Maler and Nickovic, 2004]. STL thus provides a natural
and compact way to reason about a robot’s motion since it
operates in a continuously evolving space-time environment.
Additionally, STL is accompanied by a robustness metric
which allows us to determine the extent of satisfaction
compared to only absolute satisfaction [Donzé, 2013].
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Figure 1. Experimental setup with three mobile bases and two
6-dof manipulators

Another important property of autonomous robots is their
ability to coordinate and work in teams. The use of multiple
robots is often necessary in situations where a single robot
is either insufficient, the task is high-energy demanding, or
unable to physically perform certain tasks. However, multi-
robot systems present their own set of challenges, such as
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communication overload, the need for a central authority for
commands, and high computational demands. The challenge,
therefore, is to derive solutions for multi-robot problems
utilising logic-based tools, ensuring the achievement of
specified high-level behaviour.

In this article, we propose MAPS2 - Multi-Robot
Autonomous Motion Planning under Signal Temporal Logic
Specifications - to address the multi-robot motion planning
problem subject to coupled STL contraints. The algorithm
encodes these constraints into an optimisation function
and selectively activates them based on the temporal
requirements of the STL formula. While doing so, each
robot only communicates with its neighbours and iteratively
searches for STL satisfying trajectories. The algorithm
ensures distributed trajectory generation to satisfy STL
formulas that consist of coupled constraints for multiple
robots. The article’s contributions are summarised in the
following attributes:

• The algorithm’s effectiveness lies in its ability to
distribute STL planning for multiple robots and in
providing a mechanism to decouple the STL formula
among robots, thereby facilitating the distribution of
tasks.

• As opposed to previous work, it covers the entire
STL formula and is not limited to a smaller fragment.
It reduces conservatism by eliminating the need for
approximations of max/min operators and samples in
continuous time to avoid abstractions.

• It incorporates a wide range of coupled constraints
(both linear and nonlinear) into the distributed
optimisation framework, enabling the handling of
diverse tasks such as pick-and-place operations and
time-varying activities like trajectory tracking.

• We present extensive simulation and hardware
experiments that demonstrate the execution of
complex tasks using MAPS2.

Additionally, the algorithm presented is sound, meaning
that it produces a trajectory that meets the STL formula and
is probabilistically complete, meaning that it will find such a
trajectory if one exists.

In our prior study [Sewlia et al., 2023], we addressed
the STL motion planning problem for two coupled agents.
There, we extended the conventional Rapidly-exploring
Random Trees (RRT) algorithm to sample in both the time
and space domains. Our approach incrementally built spatio-
temporal trees through which we enforced space and time
constraints as specified by the STL formula. The algorithm
employed a sequential planning method, wherein each agent
communicated and waited for the other agent to build its
tree. In contrast, the present work addresses the STL motion
planning problem for multiple robots. Here, our algorithm
adopts a distributed optimisation-based approach, where
spatial and temporal aspects are decoupled to satisfy the STL
formula. Instead of constructing an incremental tree, as done
in the previous work, we introduce a novel metric called
the validity domain and initialise the process with an initial
trajectory. In the current research, we only incorporate the
STL parse tree and the Satisfaction variable tree from our
previous work (Section 3.2 here). Additionally, we present

experimental validation results and introduce a novel STL
verification architecture.

The rest of the paper is organised as follows. Section 2
presents the related work, Section 3 presents the notations
and necessary preliminaries, Section 4 formulates the
problem of this work, Section 5 presents the STL inclusion
along with the underlying assumptions and important
definitions, Section 6 presents the main algorithm MAPS2

along with analyses of the algorithm, Section 8 presents the
experimental validation on a real multi-robot setup, while
Section 7 presents simulations. Finally, Section 9 concludes
the paper.

2 Related Work
In the domain of single-agent motion planning, different
algorithms have been proposed to generate safe paths for
robots. Sampling-based algorithms, such as CBF-RRT [Yang
et al., 2019], have achieved success in providing a solution
to the motion planning problem in dynamic environments.
However, they do not consider high-level complex mission
specifications. Works that impose high-level specifications
in the form of LTL, such as [Ayala et al., 2013, Bhatia
et al., 2010, Vasile and Belta, 2013, Fainekos et al., 2009],
resort to a hybrid hierarchical control regime resulting in
abstraction and explosion of state-space. While a mixed
integer program can encode this problem for linear systems
and linear predicates [Wolff et al., 2014], the resulting
algorithm has exponential complexity, making it impractical
for high-dimensional systems, complex specifications, and
long duration tasks. To address this issue, [Kurtz and Lin,
2022] proposes a more efficient encoding for STL to reduce
the exponential complexity in binary variables. Additionally,
[Lindemann and Dimarogonas, 2017] introduces a new
metric, discrete average space robustness, and composes a
Model Predictive Control (MPC) cost function for a subset
of STL formulas.

In multi-agent temporal logic control, works such as
[Verginis and Dimarogonas, 2018, Kress-Gazit et al., 2009]
employ workspace discretisation and abstraction techniques,
which we avoid in this article due to it being computationally
demanding. Some approaches to STL synthesis involve
using mixed-integer linear programming (MILP) to encode
constraints, as previously explored in [Belta and Sadraddini,
2019, Raman et al., 2014, Sadraddini and Belta, 2015].
However, MILPs are computationally intractable when
dealing with complex specifications or long-term plans
because of the large number of binary variables required
in the encoding process. The work in [Sun et al., 2022]
encodes a new specification called multi-agent STL (MA-
STL) using mixed integer linear programs (MILP). However,
the predicates here depend only on the states of a single
agent, can only represent polytope regions, and finally,
temporal operations can only be applied to a single agent at
a time. In contrast, this work explores coupled constraints
between robots and predicates are allowed to be of nonlinear
nature.

As a result, researchers have turned to transient control-
based approaches such as gradient-based, neural network-
based, and control barrier-based methods to provide
algorithms to tackle the multi-robot STL satisfaction
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problem [Kurtz and Lin, 2022]. Such approaches, at the
cost of imposing dynamical constraints on the optimisation
problem, often resort to using smooth approximations of
temporal operators at the expense of completeness arguments
or end-up considering only a smaller fragment of the syntax
[Lindemann et al., 2017,Charitidou and Dimarogonas, 2021,
Chen and Dimarogonas, 2022,Lindemann and Dimarogonas,
2018]. STL’s robust semantics are used to construct
cost functions to convert a synthesis problem to an
optimisation problem that benefits from gradient-based
solutions. However, such approaches result in non-smooth
and non-convex problems and solutions are prone to local
minima [Gilpin et al., 2020]. In this work, we avoid
approximations and consider the full expression of the STL
syntax. The proposed solution adopts a purely geometrical
approach to the multi-robot STL planning problem. Our
current focus is directed towards the planning problem,
specifically the generation of trajectories that fulfil STL
constraints, rather than the dynamical constraints or the
precise control techniques used to execute the trajectory.

3 Notations and Preliminaries
The set of natural numbers is denoted by N and the set of real
numbers by R. With n ∈ N, Rn is the set of n-coordinate
real-valued vectors and Rn

+ is the set of real n-vector with
non-negative elements. The cardinality of a set A is denoted
by |A|. If a ∈ R and [b, c] ∈ R2, the Kronecker sum is
defined as a⊕ [b, c] = [a+ b, a+ c] ∈ R2. We further define
the Boolean set as B = {⊤,⊥} (True, False). The acronym
DOF stands for degrees of freedom.

3.1 Signal Temporal Logic (STL)
Let x : R+ → Rn be a continuous-time signal. Signal
temporal logic [Maler and Nickovic, 2004] is a predicate-
based logic with the following syntax:

φ = ⊤ | µh | ¬φ | φ1U[a,b]φ2 | φ1 ∧ φ2 (1)

where φ1, φ2 are STL formulas and U[a,b] encodes the
operator until, with 0 ≤ a < b <∞; µh is a predicate of
the form µh : RN → B defined by means of a vector-valued
predicate function h : RN → R as

µh =

{
⊤ h(x(t)) ≤ 0

⊥ h(x(t)) > 0
. (2)

The satisfaction relation (x, t) |= φ indicates that signal x
satisfies φ at time t and is defined recursively as follows:

(x, t) |= µh ⇔ h(x(t)) ≤ 0

(x, t) |= ¬φ ⇔ ¬((x, t) |= φ)

(x, t) |= φ1 ∧ φ2 ⇔ (x, t) |= φ1 ∧ (x, t) |= φ2

(x, t) |= φ1U[a,b]φ2 ⇔ ∃t1 ∈ [t+ a, t+ b] s.t. (x, t1) |= φ2

∧ ∀t2 ∈ [t, t1], (x, t2) |= φ1.

We also define the operators disjunction, eventually, and
always as φ1 ∨ φ2 ≡ ¬(¬φ1 ∧ ¬φ2), F[a,b]φ ≡ ⊤U[a,b]φ,
and G[a,b]φ ≡ ¬F[a,b]¬φ, respectively. Each STL formula is
valid over a time horizon defined as follows.

Definition 1. [Madsen et al., 2018] . The time horizon
th(φ) of an STL formula φ is recursively defined as,

th(φ) =





0, if φ = µ

th(φ1), if φ = ¬φ1

max{th(φ1), th(φ2)}, if φ = φ1 ∧ φ2

b+max{th(φ1), th(φ2)}, if φ = φ1U[a,b]φ2.
(3)

In this work, we consider only time bounded temporal
operators, i.e., when th(φ) <∞. In the case of unbounded
STL formulas, it is only possible to either falsify an always
operator or satisfy an eventually operator in finite time, thus
we consider only bounded time operators.

3.2 STL Parse tree
An STL parse tree is a tree representation of an STL formula
[Sewlia et al., 2023]. It can be constructed as follows:

• Each node is either a temporal operator node {GI ,FI},
a logical operator node {∨,∧,¬}, or a predicate node
{µh}, where I ⊂ R is a closed interval;

• temporal and logical operator nodes are called set
nodes;

• a root node has no parent node and a leaf node has
no child node. The leaf nodes constitute the predicate
nodes of the tree.

A path in a tree is a sequence of nodes that starts at
a root node and ends at a leaf node. The set of all such
paths constitutes the entire tree. A subpath is a path that
starts at a set node and ends at a leaf node; a subpath could
also be a path. The resulting formula from a subpath is
called a subformula of the original formula. In the following,
we denote any subformula of an STL formula φ by φ̄.
Each set node is accompanied by a satisfaction variable
τ : φ̄→ {+1,−1} and each leaf node is accompanied by
a predicate variable π = µh where h is the corresponding
predicate function. A signal x satisfies a subformula φ̄ if
τ = +1 corresponding to the set node where the subpath of
φ̄ begins. Similarly, τ(root(φ)) = +1⇔ (x, t) |= φ where
root is the root node of φ. An analogous tree of satisfaction
and predicate variables can be drawn, called satisfaction
variable tree. The satisfaction variable tree borrows the same
tree structure as the STL parse tree. Each set node from the
STL parse tree maps uniquely to a satisfaction variable τi
and each leaf node maps uniquely to a predicate variable πi,
where i is an enumeration of the nodes in the satisfaction
variable tree. An example of construction of such trees is
shown below.

Example 1. The STL parse tree and the satisfaction
variable tree for the STL formula

φ = FI1

(
µh1 ∨ GI2(µh2)

)
∧ GI3FI4(µ

h3) ∧ GI5(µh4).

(4)

are shown in Figure 2. From the trees, one obtains the impli-
cations τ2 = +1 =⇒ (x, t) |= FI1

(
µh1 ∨ GI2(µh2)

)
, and

τ7 = +1 =⇒ (x, t) |= GI5(µh4).
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Figure 2. STL parse tree and satisfaction variable tree for the
formula in (4).

4 Problem Formulation
We start by presenting the multi-robot system and defining
the types of constraints, followed by presenting the topology
and finally stating the problem being addressed.

4.1 Multi-robot system
Consider a multi-robot system with states x =
[x⊤

1 ,x
⊤
2 , . . . ,x

⊤
i , . . . ,x

⊤
N ]⊤ where each robot

i ∈ V = {1, . . . ,N} consists of states xi ∈ Rni subject
to state constraints xi ∈ Xi ⊆ Rni . Some robots further
need to satisfy coupled state constraints xi ∈ Xij(xj).
Then, we call the robot j a neighbour of the robot i and
write j ∈ Ni where Ni is the set of all such neighbours of
robot i. These state constraints are the task specifications
derived from the STL formula i.e., they represent tasks to be
executed by the robots. Additionally, these constraints can
entail obstacle avoidance and are therefore outlined within
the STL formula. The state constraints are defined by the
inequalities

αhi(xi) ≤ 0, α ∈ {1, 2, . . . , ri}
βhij(xi,xj) ≤ 0, j ∈ Ni, β ∈ {1, 2, . . . , si}

(5)

where αhi and βhij are continuous functions; αhi : Rni →
R specifies constraints on robot i and ri is the number of such
constraints, and, βhij : Rni × Rnj → R specifies coupled
constraints between robots i and j with si being the number
of such constraints. The state constraint sets are then defined
as,

Xi := {xi ∈ Rni |αhi(xi) ≤ 0}
Xij(xj) := {xi ∈ Rni |βhij(xi,xj) ≤ 0}.

We further consider that βhij(xi,xj) =βhji(xj ,xi). The
inequalities αhi and βhij are predicate function inequal-
ities of the form (2). A predicate function inequality
h(xi(t)) ≤ 0 corresponds to state constraint αhi(xi) ≤ 0
and h(xi(t),xj(t)) ≤ 0 corresponds to the state constraint
βhij(xi,xj) ≤ 0. Next, we state a common assumption
regarding the STL formula.

Assumption 1. The STL formula is in positive normal form
i.e., it does not contain the negation operator.

The above assumption does not cause any loss of
expression of the STL syntax (1). As shown in [Sadraddini

and Belta, 2015], any STL formula can be written in
positive normal form by moving the negation operator to the
predicate.

4.2 Graph topology
The coupled state constraints βhij define an undirected graph
over the multi-robot system. The graph is given by G =
{V,E} where E = {(i, j)|j ∈ Ni} is the set of edges; E
defines the communication links between the robots in V.
Here, we assume that the communication between the robots
is instantaneous and without any delays.

4.3 Problem statement
LetWi ∈ Rni denote the space of robot i’s states andW =
W1 ×W2 × · · · ×WN be the coupled space of all robot’s
states. Let S ⊆ W be a compact set where a trajectory y :
[0, th(φ)]→ S satisfies the STL formula (as in (1)). The
set S is referred to as the satisfiable set. It is assumed that
obstacles are defined in the STL formula, making S the free
space and ensuring that any continuous trajectories within S
satisfies the STL formula. Moreover, we have the following
feasibility assumption:

Assumption 2. The set S is nonempty, i.e., S ≠ ∅.
The above assumption is necessary for the derivation of

the probabilistic completeness of the proposed algorithm.
We consider the following problem formulation.

Problem 1. Given an STL formula φ that specifies tasks
in a multi-robot system with N robots, design a distributed
algorithm to find the trajectory y = [y⊤

1 ,y
⊤
2 , . . . ,y

⊤
N]⊤ :

[0, th(φ)]→ S for each robot i ∈ {1, . . . , N}, by only
communicating with neighbours j ∈ Ni.

5 STL Inclusion
This section presents the STL inclusion within our problem
framework. First, we delve into including spatial constraints
in Section 5.1, followed by temporal inclusion in Section 5.2.

5.1 Spatial Constraints
The planning problem is solved in a distributed way where
each robot maximises a local optimality criterion. All robots
solve their local optimisation problem by communicating
with their neighbours. For robot i, the constraints (5) are cast
into the cost function F i as

F i =

ri∑

α=1

1

2
max

(
0, αhi

)2

+

si∑

β=1

1

2
max

(
0, βhij

)2

, (6)

and the resulting optimisation problem takes the form

min
xi∈Wi⊂Rni

F i (7)

whose solution x⋆
i satisfies F i(x) ≤ 0. The solution for

finding the global minimum of a nonconvex function is
a subject of extensive research. We argue that employing
gradient descent with random initialisations is adequate for
addressing this problem, particularly since the initialisations
are sampled from a compact set,Wi. Furthermore, using the
knowledge that the minimum of the function, F i(x) ≤ 0,
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acts as a stopping criterion and facilitates the attainment of
the desired solution. We direct readers to the seminal work
in [Nedic and Ozdaglar, 2009], which presents a distributed
gradient descent algorithm for multi-agent systems.
Additionally, under certain assumptions, [Daneshmand
et al., 2020] demonstrates that gradient descent with a
constant step size avoids entrapment at saddle points.
Gradient descent is also shown to efficiently manage
most reach-avoid constraints without the need for re-
initialisation, given that such constraints are expressible
using norms. For our application of gradient descent, we
utilise the function presented in Function 1. Function 1

Function 1: DistributedOptimisation

Input: xi, step size δ, maximum iterations L′,
activation variables λij , k ← 0

Output: xi
opt

1 Receive neighbour states xj for all j ∈ Ni;
2 F i =

∑
j λij max(0, hij)

2;
3 ∇F i ← GradientComputation(xi

inter,x
j
neigh);

4 ∆xi = −∇F i;
5 while F i > 0 do
6 xi := xi + δ∆xi;
7 Receive neighbour states xj for all j ∈ Ni;
8 ∇F i ← GradientComputation(xi,xj);
9 ∆xi = −∇F i;

10 k ← k + 1;
11 if k > L′ then random xi break;

implements the gradient descent algorithm as described
in Algorithm 9.3 of [Boyd and Vandenberghe, 2004],
utilising initial conditions xi, step size δ, maximum
number of iterations L′, and activation variables λij as
inputs. It returns the optimised states xi

opt as output.
In line 8, the function GradientComputation()
computes the gradient, either analytically or numerically.
The stopping criterion is met either when a feasible state
is determined, indicated by F i ≤ 0, or when the iteration
count exceeds L′ (line 11), which may occur due to multiple
conflicting predicates active within F i. This situation
arises because the algorithm accounts for the possibility
that the eventually operator may not be satisfied at every
sampled point within its validity domain. This occurs, for
example, if φ = F[0,5]G[0,5]µ1 ∧ G[5,10]µ2, and there is a
conflict between µ1 and µ2 (i.e., ∄xi

opt ∈ Rni such that
µ1(x

i
opt) ≤ 0 ∧ µ2(x

i
opt) ≤ 0). In such cases, it becomes

necessary for µ1 to be true exclusively within the interval
[0, 5][s] and for µ2 to be true exclusively within the interval
[5, 10][s].

The robots solve their respective optimisation problem
cooperatively in a distributed manner via inter-neighbour
communication. This makes the problem distributed,
as every interaction between robots is part of the
communication graph. Given the nature of the optimisation
problem, there is a trade-off between robustness and
optimisation performance since x⋆ converges to the
boundaries imposed by the STL formula constraints, making
it vulnerable to potential perturbations. However, introducing

a slack variable into the equation can enhance robustness,
albeit at the cost of sacrificing completeness arguments. The
example below shows how to construct the optimisation
functions F i.

Example 2. Consider a system with 3 agents and the
corresponding states {x1, x2, x3}, and let the STL formula
be: φ = (∥x1 − x2∥ > 5) ∧ (∥x2 − x3∥ < 2); then, the
functions F i, for i ∈ {1, 2, 3}, are,

F 1 =
1

2
max(0, 5− ∥x1 − x2∥)2

F 2 =
1

2
max(0, 5− ∥x1 − x2∥)2 +

1

2
max(0, ∥x2 − x3∥ − 2)2

F 3 =
1

2
max(0, ∥x2 − x3∥ − 2)2.

Note that the optimisation problem here only considers the
spatial aspect and temporal inclusion is discussed below.

5.2 Temporal Constraints
We now introduce the concept of validity domain, a time
interval associated with every predicate and defined for every
path in the STL formula. This interval represents the time
domain over which each predicate applies and is defined as
follows:

Definition 2. The validity domain vd(φ̄) of each path φ̄ of
an STL formula φ, is recursively defined as

vd(φ̄) =





0, if φ̄ = µh

vd(φ̄1), if φ̄ = ¬φ̄1

[a, b], if φ̄ = G[a,b]µh

a⊕ vd(φ̄1), if φ̄ = G[a,b]φ̄1, φ̄1 ̸= µh

t⋆ + T ⋆ ⊕ vd(φ̄1), if φ̄ = F[a,b]φ̄1

(8)
where T ⋆ := {t ∈ [a, b] | (x, t) |= F[a,b]φ̄} is a time instant
in [a, b] when the state x evaluated at t of a signal x(t)
satisfies the eventually operator. The variable t⋆ is initialised
to 0, but takes the value t⋆ = T ⋆ every time T ⋆ is updated
and thus captures the last instance of satisfaction for the
eventually operator.

The above definition of t⋆ is necessary due to the
redundancy of the eventually operator; we must ascertain the
specific instances where the eventually condition is met to
ensure finding a feasible trajectory. Additionally, we need
to maintain the history of T ⋆ for nested temporal operators
which require recursive satisfaction. The validity domain is
determined for each path of an STL formula in a hierarchical
manner, beginning at the root of the tree, and each path
has a distinct validity domain. The number of leaf nodes
in an STL formula is equal to the total number of validity
domains. In Definition 2, we do not include the operators ∧
and ∨ because they do not impose temporal constraints on
the predicates and thus inherit the validity domains of their
parent node. If there is no parent node, operators ∧ and ∨
inherit the validity domains of their child node.

Remark 1. The validity domain is specially defined in
the following cases. If a path contains only predicates,
the validity domain of µh is equal to the time horizon of
φ (i.e., vd(µh) = th(φ)). Furthermore, if a path contains
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nested formulas with the same operators, such as φ̄ =
G[1,10]G[0,2]µh, then the validity domain of φ̄ is equal to the
time horizon of the path (i.e., vd(φ̄) = th(φ̄)). For example,
vd(G[1,10]G[0,2]µh) = th(φ̄) = [1, 12].

Example 3. Consider the following examples of the validity
domain:

• φ1 = G[5,10]µh, then vd(φ1) = [5, 10], which is the
interval over which µh must hold.

• φ2 = F[5,10]µ
h, then t⋆ is initialised to 0, T ⋆ ∈ [5, 10]

and vd(µh) = 0. Therefore, vd(φ2) = T ⋆ ∈ [5, 10] is
the instance when µh must hold.

• φ3 = F[5,10]G[0,2]µh, then t⋆ is initialised to 0, T ⋆ ∈
[5, 10], vd(G[0,2]µh) = [0, 2]. Therefore, vd(φ3) =
0 + T ⋆ ⊕ [0, 2] = [T ⋆, T ⋆ + 2] is the interval over
which µh must hold such that φ3 is satisfied.

• φ4 = G[2,10]F[0,5]µ
h, then a = 2 and vd(φ4) =

2⊕ vd(F[0,5]µ
h) = 2 + 0 + T ⋆ where T ⋆ ∈ [0, 5].

Suppose T ⋆ = 1, then vd(φ4) = 3 is the time instance
when µh must hold. Once µh = ⊤, then t⋆ = T ⋆ and
the new vd(φ4) = 2 + 1 + T ⋆ where T ⋆ ∈ [0, 5].

• φ5 = F[0,100]G[5,10]F[0,1]µ
h, then t⋆ = 0,

T ⋆ ∈ [0, 100] and vd(φ5) = T ⋆ + a⊕ vd(F[0,1]µ
h).

Suppose T ⋆ = 50, then vd(φ5) = 55⊕ vd(F[0,1]µ
h)

and so on.

Regarding the STL formula in equation (4), the va-
lidity domains are defined for the following paths:
FI1µ

h1

, FI1GI2µh2

, GI3FI4µ
h3

, and GI5µh4

.

We use the following notational convenience in this work:
if a parent node of a leaf node of a path φ̄ is an eventually
operator we denote the corresponding validity domain by
vdF (), and, if the parent node of a leaf node of a path φ̄
is an always operator we denote the corresponding validity
domain by vdG(). The notation vdF () indicates that the
predicate of the respective leaf node needs to hold at some
instance in the said interval, and vdG() indicates that the
predicate of the respective leaf node needs to hold throughout
the interval. The following lemma formalises the relation
between the STL formula and its corresponding encoding as
described above.

Lemma 1. Suppose x(t) = [x⊤
1 ,x

⊤
2 , . . . ] represents the

trajectories of all robots, and φ̄k encompasses all
subformulas associated with the STL formula φ. Let∑

i F
i(x(t)) ≤ 0 for all t ∈ ⋃

k vd(φ̄k). Then, it holds that
x(t) |= φ.

Proof. The proof follows from the construction of the
optimisation function (6) and the validity domain. Notice
that if the optimisation problem (7) converges to the desired
minima at F i(x) ≤ 0, then µαhi = ⊤ and µβhij = ⊤ for all
α ∈ {1, . . . , ri} and β ∈ {1, . . . , si}. Next, by definition,
the validity domain is defined for the STL formula and if F i

is minimised during the validity domain, then x(t) |= φ.

In the next Section, we present how to integrate the
validity domain with the optimisation problem in (7),
completing thus the spatial and temporal integration.

6 The Algorithm
In this section, we present the algorithm for generating
continuous trajectories that meet the requirements of a given
STL formula φ. The algorithm is executed by the robots
offline in a distributed manner, in the sense that they only
communicate with their neighbouring robots. The algorithm
builds a tree Ti = {Vi, Ei} for robot i where Vi is the vertex
set and Ei is the edge set. Each vertex z ∈ R+ × Rni is
sampled from a space-time plane.

In what follows, we give a high-level description of
the algorithm. The general idea is to start with an initial
trajectory that spans the time horizon of the formulas th(φ),
then repeatedly sample random points along the trajectory
and use gradient-based techniques to find solutions that
satisfy the specification at these points. More specifically, the
algorithm begins by connecting the initial and final points
zi0 = {0,xi

0} and zif = {tif ,xi
f} with a single edge Ei =

{(zi0, zif )}. The initial conditions zi0 = {ti0,xi
0} depend on

the robot’s initial position and time. The final conditions
are chosen to be zif = {th(φ) + ϵ,xi

f} where ϵ > 0 and
xi
f ∈ Rni . The final states xi

f can be randomly chosen
since the states in the interval [0, th(φ)] will be determined
by the algorithm based on the constraints imposed by φ.
The algorithm then randomly selects a time instant t0 ∈
[0, th(φ)] and uses linear interpolation to determine the
states of each robot at that time, denoted by x0. The robots
then solve the distributed optimisation problem (7) to find
new positions x⋆ that meet the specification at time t0. The
algorithm then repeats this process at a user-specified time
density, updating the trajectories as necessary. The result is a
trajectory that asymptotically improves the task satisfaction
of the STL formula.

Example 4. Before we get into the technical details, let us
consider an example of 4 agents, represented by the colours
blue, green, yellow and magenta, to illustrate the procedure.
Suppose, at a specific instance in time, say t0, the STL
formula requires agent 1 (blue) and agent 2 (green) to be
more than 6 units apart and agent 3 (yellow) and agent 4
(magenta) to be closer than 6 units i.e., for ϵ > 0,

G[t0−ϵ,t0+ϵ]

(
(blue and green are farther than 6 units apart)∧

(yellow and magenta are closer than 6 units)
)

We begin the process by connecting the initial and final
points zi0 and zif with an initial trajectory for all agents, as
shown in Figure 3a. Each agent’s vertex set is Vi and consists
of the start and end points denoted by zi0 and zif respectively,
while its edge set Ei contains only one edge connecting
the start and end points. From the initial trajectory, the
algorithm randomly selects a point at time instance t0 from
the entire time domain and uses linear interpolation to
determine the state of each agent at that time. The agents
solve (7) using the initial position x0 to find new position x⋆,
as seen in Figure 3b. As shown in Figure 3c, the distributed
optimisation problem (7) is solved, resulting in a solution x⋆,
in which agent 1 and agent 2 are positioned so that they are
more than 6 units apart and agent 3 and agent 4 remain
undisturbed. The latter is the result of using functions of
the form 1/2max(0, hij)

2, and since agent 3 and agent 4
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Figure 3. Illustration of the proposed algorithm
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already satisfy the requirements, i.e., h34 < 0, the function is
valued 0. The newly determined positions of agents 1 and 2
are added to the tree, allowing the trajectory to be shaped to
meet the requirements. The updated trajectory can be seen
in Figure 3d. This process of randomly selecting a point
in time, determining the state of the agents and updating
their positions is repeated for a user-defined number of times
L, to ensure that the trajectory satisfies the STL formula φ
throughout the time horizon.

6.1 The overall algorithm
Here, we provide the main algorithm used to solve
the problem at hand. The algorithm is called MAPS2

(short for ‘multi-robot anytime motion planning
under signal temporal logic specifications’) and
consists of the following functions: a function called
GradientDescent() that addresses equation (7), a
function called SatisfactionVariable() which
calculates the satisfaction variables discussed in Section
3.2, and a function called ValidityDomain() which
calculates the intervals during which a predicate function is
active. Each robot executes the algorithm independently.

The architecture of the algorithm is depicted in Figure
4 and proceeds as follows: first, the algorithm takes an
STL formula φ as input, along with the initial and final
conditions. Additionally, all robots initialise a random seed.
The algorithm requires a maximum number of nodes, step
size and stopping criterion for the optimisation problem.

6.1.1 MAPS2 The algorithm is presented in Algorithm 2;
it starts with an initial trajectory connecting zi0 and zf0 (see
lines 1-3) and takes a random seed as input. Such a seed
allows all robots to pick the same random number over
the time horizon of the formula. It continues by repeatedly
sampling a time point, interpolating states, using gradient
descent to find a satisfactory solution, and expanding the
tree with new vertices until the total number of vertices L
is reached, see lines 5-14. In line 7, the SearchSort()

Algorithm 2: MAPS2

Input: Initial condition zi0 = {ti0,xi
0}, Final condition

zif = {tif ,xi
f}, Maximum number of nodes L,

random seed, step size δ, stopping criterion η,
satisfaction variables of all subpaths φ̄k:
τ(φ̄k)← −1

Output: Ti
1 Vi ← Vi ∪ zi0 ∪ zif ;
2 Ei ← Ei ∪ {zi0, zif};
3 Ti ← {Vi, Ei};
4 j ← 0;
5 while j ≤ L and τ(root) ̸= +1 do
6 t0 ← generate random number in [ti0, t

i
f ];

7 index← SearchSort(Vi, t0) ;
8 ziinter ← Interpolate(Vi, index);
9 ziopt, τ ←

GradientDescent(ziinter, δ, L
′, η);

10 Vi ← Vi ∪ ziopt ;
11 Ei ← Ei \ {ziindex, z

i
index+1};

12 Ei ← Ei ∪ {ziindex, z
i
opt};

13 Ei ← Ei ∪ {ziopt, z
i
index+1};

14 Ti ← {Vi, Ei};
15 j ← j + 1;
16 if j = L then j ← 0, and ∀F , τ(F) = −1;

function separates the vertices Vi into two sets based on
their time values: one set with time values lower than t0

(the vertex with the highest time in this set is indexed
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with ‘index’), and another with values greater than t0

(the vertex with the lowest time in this set is indexed
with ‘index + 1’). The corresponding vertices are ziindex =
{tiindex,x

i
index} and ziindex+1 = {tiindex+1,x

i
index+1}. Then, the

algorithm uses linear interpolation in line 8 via the function
Interpolate() to obtain the vertex ziinter = {t0,xi

inter}.
This is obtained by solving for xi

inter element-wise as the
solution of

xi
inter =

(xi
index+1 − xi

index

tiindex+1 − tiindex

)
(t0 − tiindex) + xi

index.

The vertex ziinter is the initial condition to solve the
optimisation problem (7); and once a solution ziopt is
obtained, it is added to the vertex set Vi in line 10. The edge
set Ei is reorganised to include ziopt in lines 11-13. Moreover,
as a safeguard, if a solution remains undiscovered following
L iterations, line 16 initiates a reset procedure. This involves
setting the satisfaction variable for all eventually operators
back to −1 and restarting the search. Since we assume that
at least one viable solution x(t) |= φ always exists (refer
to Assumption 2), the absence of a solution occurs solely
when an eventually operator is satisfied at an impractical
instance of time. Such an impractical instance of time affects
the solution of the algorithm since we have redundancies
in picking the satisfaction instance. By resetting these
operators, the algorithm aims to locate a solution under
feasible instances. Since we assume that at least one viable
solution x(t) |= φ always exists (refer to Assumption 2),
the absence of a solution occurs solely when an eventually
operator is satisfied at an impractical instance of time. Such
an impractical instance of time affects the solution of the
algorithm because we have redundancies in picking the
satisfaction instance (F[a,b]µ |= φ if µ = ⊤ at any single
instance in [a, b]). By resetting these operators, the algorithm
aims to locate a solution under feasible instances.”

6.1.2 GradientDescent The function is presented in
Function 3 and computes the optimal value, ziopt, by solving
the problem presented in equation (7). This allows the robots
to compute vertices that locally satisfy the STL formula.
Once ziopt is determined through Function 1, the satisfaction
variables are updated in Function 4.

Based on the validity domain, the Function 3 determines
which predicate functions are active in (6) at every sampled
time instance t0. The Function ValidityDomain() in
line 3 calculates the validity domains of each path φ̄ based
on Definition 2. Among the set of predicate functions
{hij |∀j ∈ Ni} associated with a robot i, a binary variable
λij ∈ {0, 1} is assigned to determine whether a predicate
function is active or not. It is set to 1 if the predicate is
active and 0 otherwise. We distinguish three cases: if the
sampled point belongs to the validity domain of a single
eventually operator and/or a single always operator, λij =
1. If the sampled point belongs to the validity domain of
multiple eventually operators, we activate only one of them
at random, that is, λij = 1 only for one of them. This
avoids enforcing conflicting predicates as it can happen that
multiple eventually operators may not be satisfied at the same
time instance (For example φ = F[0,1](x > 0) ∧ F[0,1](x <
0)); see lines 6-13.

In lines 16-24, the algorithm updates the satisfaction
variable of all paths in the STL formula that impose

Function 3: GradientDescent
Input: ziinter = {t0,xi

inter}, step size δ,
maximum iterations L′, stopping criterion η

Output: ziopt, τ

1 Receive neighbour states xj
neigh for all j ∈ Ni;

2 forall φ̄ in φ do
3 vdij(φ̄)← ValidityDomain (φ̄);

4 k ← 0;
5 λij = 0, ∀j;
6 case t0 ∈ vdFij(φ̄) do
7 λij = 1;

8 case t0 ∈ vdGij(φ̄) do
9 λij = 1;

10 case t0 ∈ ⋂
k vd

F
ik(φ̄) do

11

{
λij = 1 for any one j = k

λij = 0 otherwise

12 case t0 ∈ ⋂
k vd

G
ik(φ̄) do

13 λik = 1 for all k;

14 xi
opt ← DistributedOptimisation(xi, δ, L′,
λij);

15 ziopt = {t0,xi
opt};

16 forall φ̄ in φ do
17 if t0 ∈ vdij(φ̄) then
18 if F i(xi

opt) ≤ 0 then
19 node = leaf(φ̄);
20 τ(leaf) = +1;
21 while node ̸= root(φ̄) and τ(node) = +1

do
22 node = parent(node);
23 τ(node), t⋆ ←

SatisfactionVariable
(node,ziopt);

24 else reset τ(φ̄), t⋆;

25 return ziopt, τ(φ)

restrictions on robot i’s states. The algorithm goes bottom-
up, starting from the leaf node to the root node. First, it
determines if ziopt is the desired minimum (i.e., F i(xi

opt) ≤
0)in line 18, and in lines 19-23, the algorithm updates the
satisfaction variable of all nodes in the path φ̄ through the
function SatisfactionVariable(). If ziopt is not the
desired minimum, then all the satisfaction variables of the
path φ̄ are reset to −1 in line 25. This could result from
conflicting predicates at the same time instance.

6.1.3 SatisfactionVariable This function, pre-
sented in Function 4, updates the satisfaction variable tree,
τ . The aforementioned procedure decides if the satisfaction
variable corresponding to each node listed is +1 (satisfied) or
−1 (not yet satisfied). The discussion of handling disjunction
operators is deferred to Section 6.2, as they are handled
differently. Considering the premise that the predicate is
true, as indicated in line 18 of Function 3, we evaluate the
satisfaction variable as follows:

• FI : The satisfaction variable of the eventually operator
is updated along with t⋆ = t0. This updated t⋆ is used
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Function 4: SatisfactionVariable
Input: node, ziopt = {t0,xi}
Output: τ, t⋆

1 case (node = FI) do
2 τ(FI) = +1;
3 t⋆ = t0;
4 return τ, t⋆;
5 case (node = GI) do
6 if robust(GI ) ≥ 0 then
7 τ(GI) = +1;
8 return τ, t⋆

9 case (node = ∧) do
10 τ(∧) = +1;
11 return τ, t⋆

to determine the new validity domains in line 3 of
Function 3; see Example 3 for an illustration of this
procedure.

• GI : Unlike the eventually operator, determining τ(GI)
necessitates the computation of robustness over the
entire validity domain of the operator. The function
robust() uses the robust semantics of the STL
presented in [Maler and Nickovic, 2004]. Particularly,
it samples a user-defined number of points in the
interval vdGij() and computes inft∈vdG

ij
hij(x

i(t)). If
the robustness is non-negative, indicating satisfaction
of the task, the value of τ(GI) is updated to +1.

• ∧: This set node returns the satisfaction variable
as +1 since it does not impose spatial or temporal
restrictions.

6.2 Branch-and-Pick for disjunctions
In our approach, we address disjunctions as follows: Given
an STL formula of the form φ =

∨
i∈1,...,K ϕi, which can

also be represented as φ = ∨(ϕ1, ϕ2, . . . , ϕK), we divide
it into K individual STL formulas. The agents then run
Algorithm 2 separately for each φ = ϕi, where i ∈ 1, . . . ,K.
For instance, consider the STL formula represented as (4),

φ = FI1

(
µh1 ∨ GI2(µh2)

)
∧ GI3FI4(µ

h3) ∧ GI5(µh4).

We branch it into two STL formulas: ϕ1 =
FI1µ1 ∧ GI3FI4(µ3) ∧ GI5(µ4) and ϕ2 = FI1GI2(µ2) ∧
GI3FI4(µ3) ∧ GI5(µ4), as illustrated in Figure 5. The
search terminates when any branch of the disjunction
satisfies the condition τ(root) ̸= +1, as specified on
line 5 of Algorithm 1. We acknowledge that this naive
method of handling disjunctions can result in exponential
growth with the addition of more operators. An alternative
approach, akin to the branch-and-bound method from
optimisation [Morrison et al., 2016], involves evaluating
the robustness of each ϕi for i ∈ 1, . . . ,K and executing
MAPS2 only for the formulas that show a faster increase
in satisfaction. However, this strategy might necessitate a
higher level of communication among robots which goes
beyond their existing communication network and possibly
require a central authority to coordinate task fulfilment. For
example, the STL formula

φ = G[0,5](x1 < 5) ∨ (F[0,5](|x2 − x3| > 2)).

∧

FI1

GI2

GI3

FI4

GI5

∨

∧

FI1

GI2

GI3

FI4

GI5

∧

FI1
GI3
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( (
,=

µh1

µh2

µh3

µh4

µh1

µh3

µh4

µh3

µh4

µh2

Figure 5. Disjunction representation for disjunctive
components using STL parse tree.

comprises disjunction between ϕ1 = G[0,5](x1 < 5) and
ϕ2 = F[0,5](|x2 − x3| > 2). Observe that ϕ1 requires no
inter-robot communication, while ϕ2 necessitates communi-
cation between robots 2 and 3. In the implementation of a
method akin to branch-and-bound, we would branch into two
formulas, ϕ1 and ϕ2, and repeatedly switch between them if
we observe the robustness of one formula decaying faster
compared to the other. This switching must be performed
by a central authority that observes the decay in robustness.
If the switching is decided among the robots, then robot 1
of ϕ1 needs to communicate the robustness decay with the
network of robots 2 and 3. This requires robot 1 to establish
communication with the network of robots 2 and 3 in
order to decide which branch to grow, thereby necessitating
communication links where none existed before. Without
such a communication link, both ϕ1 and ϕ2 would need to
be satisfied using the naive approach presented in our work.
This motivates our choice to use the naive approach.

6.3 Analysis
In this section, we analyse the proposed algorithm and arrive
at proving the probabilistic completeness.

Along the lines of [Kleinbort et al., 2019], let a trajectory
y be located on the boundary of the set S, the satisfiable set,
dividingW into a feasible set S and an infeasible setW\S .

Starting with an initial linear trajectory in the augmented
time-space domain, each uniformly sampled time point t0

corresponds to a position xinter either in S orW\S . If xinter ∈
S, we leave it unchanged as it meets the requirements. But
if xinter /∈ S, we use gradient descent to reach a point on y,
since it lies on the boundary of the constraints’ set.

Next, divide the trajectory y : [0, th(φ)]→ S into L+ 1
points xi, where 0 ≤ i ≤ L and y(th(φ)) = xf = xL by
dividing the time duration into equal intervals of δt. Without
loss of generality, assume that the points xi and xi+1 are
separated by δt in time. With Lδt = th(φ), the probability of
sampling a point in an interval of length δt can be calculated
as p = δt

th(φ) . If δt << th(φ), then p < 1/2. Denote the
sequential covering class* of trajectory y as Yδt(xi). The
length of Yδt(xi) is δt in the time domain and is centered at
xi. See Figure 6 for reference. A trial is counted as successful
if we sample a point t0 within the interval δt/2 on either side
of xi, that is, within Yδt(xi). If there are L successful trials,

∗Meaning y ⊂
⋃L

x=i Yδt (xi)
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Figure 6. Illustration of Yδt(xi)

the entire trajectory y is covered, and the motion planning
problem is solved. Consider k total samples, where k ≫ L,
and treat this as k Bernoulli trials with success probability p
since each sample is independent with only two outcomes.
We are now ready to state the following lemma.

Lemma 2. Let a constant L and probability p such that
p < 1

2 . Further, let k represent the number of samples taken
by the MAPS2 algorithm. Then, the probability that MAPS2

fails to sample a segment after k samples is at most (k−L)p
(kp−L)2 .

Proof. The probability of not having L successful trials after
k samples can be expressed as:

P[Xk ≤ L] =

L−1∑

i=0

(
k

i

)
pi(1− p)k−i

and according to [Feller, 1968], if p < 1
2 , we can upper

bound this probability as:

P[Xk ≤ L] ≤ (k − L)p

(kp− L)2
.

As p and L are fixed and independent of k, the expression
(k−L)p
(kp−L)2 approaches 0 with as k increases, thus completing
the proof.

Next, we present a final lemma which helps us prove the
probabilistic completeness of the algorithm.

Lemma 3. No sampled point xi is falsely labelled as
satisfying the STL formula φ unless it actually does.

Proof. The algorithm initiates by setting all satisfaction
variables, τ , to−1, as inputs to Algorithm 2. These variables
are updated in Function 4 designed for evaluating whether
τ meets the satisfaction criteria. The function adjusts τ in
accordance with the definition of STL operators presented
in Section 3.1, ensuring that updates accurately reflect
the satisfaction status. Furthermore, the update to τ(leaf)
within Function 3 (referenced at line 20) occurs only when
the condition F i ≤ 0 is met. This condition indicates that
all active predicates are satisfied by definition. Thus, no
satisfaction variable is incorrectly updated.

Next, the paper’s final result is presented, which states that
the probability of the algorithm providing an STL formula
satisfying trajectory (if one exists) approaches one as the
number of samples tends to infinity. This is a desirable
property for sampling-based planners and such algorithms
are termed probabilistically complete.

Theorem 1. Algorithm 2 is probabilistically complete.

Proof. The proof follows from Lemmas 1, 2, and 3. From
Lemma 1 and Lemma 3, we know that every sample added
to the trajectory satisfies the STL formula. Thus, what needs
to be shown is that the algorithm samples infinitely many
times and covers the entire time horizon. From Lemma 2, we
know that the probability of covering the entire time horizon
is 1−P[Xk ≤ L]. Suppose the Algorithm 2 reaches J = L′

samples without finding a feasible solution, then it discards J
samples as seen in line 16 of Algorithm 2. Given Assumption
2, we have J <∞, and since J is the number of discarded
samples, we also have J ≤ k where k is the total number of
samples sampled so far (including the discarded ones). Thus,
the probability of the trajectory satisfying the STL formula
is 1− ((k−J)−L)p

((k−J)p−L)2 , which approaches one as k →∞. Thus,
the algorithm is probabilistically complete.

7 Simulations
In this section, we present simulations of various scenarios
encountered in a multi-robot system. Restrictions are
imposed using an STL formula and MAPS2 is utilised to
create trajectories that comply with the STL formula. In the
following we consider 4 agents, with δ = 0.1, η = 0.01 and
L = L′ = 100. The simulations were run on an 8 core Intel®

Core™ i7 1.9GHz CPU with 16GB RAM. 1

7.0.1 Collision avoidance We begin with a fundamental
requirement in multi-robot systems: avoiding collisions. In
this scenario, it is assumed that all agents can communicate
or sense each other’s positions. The following STL formula
is used to ensure collision avoidance in the interval 20[s] to
80[s]:

φ = G[20,80](∥xi − xj∥ ≥ 1)

where {i, j} ∈ {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}.
As depicted in Figure 7a, all four agents maintain a distance
of at least 1 unit from each other during the interval
[20, 80][s]. The maximum computation time by any agent is
0.1143[s].

7.0.2 Rendezvous The next scenario is rendezvous. We
use the eventually operator to express this requirement.
The STL formula specifies that agents 1 and 3 must
approach each other within 1 distance unit during the interval
[40, 60][s] and similarly, agents 2 and 4 must meet at a
minimum distance of 1 unit during the same interval. The
STL formula is:

φ = F[40,60](∥x1 − x3∥ ≤ 1 ∧ ∥x2 − x4∥ ≤ 1).

As seen in Figure 7b, agents 1 and 3 and agents 2 and
4 approach each other within a distance of 1 unit during
the specified interval. It’s worth noting that the algorithm
randomly selects the specific time t⋆ within the continuous
interval [40, 60][s] at which the satisfaction occurs. The
maximum computation time by any agent is 0.0637[s].

7.0.3 Stability The last task is that of stability, which
is represented by the STL formula F[a1,b1]G[a2,b2]µ.
This formula requires that µ must always hold within
the interval [t⋆ + a2, t

⋆ + b2], where t⋆ ∈ [a1, b1]. This
represents stability, as it requires µ to always hold within
the interval [t⋆ + a2, t

⋆ + b2], despite any transients that may
occur in the interval [a1, t⋆). Figure 7c presents a simulation
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Figure 7. Simulation results of MAPS2 with four agents.
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Figure 8. Overall case study

of the following STL formula:

φ = F[0,100] G[0,20]
(
(1.9 ≤ x1 ≤ 2.1) ∧ (3.9 ≤ x2 ≤ 4.1)

∧ (5.9 ≤ x3 ≤ 6.1) ∧ (7.9 ≤ x4 ≤ 8.1)
)

where t⋆ = 63.97[s]. The maximum computation time by
any agent is 0.0211[s].

7.0.4 Recurring tasks The next scenario is that of
recurring tasks. This can be useful when an autonomous
vehicle needs to repeatedly survey an area at regular
intervals, a bipedal robot needs to plan periodic foot
movements, or a ground robot needs to visit a charging
station at specified intervals. The STL formula to express
such requirements is given by G[a1,b1]F[a2,b2]µ, which reads
as ‘beginning at a1[s], µ must be satisfied at some point in
the interval [a1 + a2, a1 + b2][s] and this should be repeated
every [b2 − a2][s].’ A simulation of the following task is
shown in Figure 7d:

φ = G[0,100]F[0,20](∥x1 − x3∥ ≤ 1).

Every 20[s], the condition |x1 − x3| ≤ 1 is met. It’s worth
noting that the specific time t⋆ at which satisfaction
occurs is randomly chosen by the algorithm. The maximum
computation time by any agent is 0.2017[s].

7.0.5 Multi-agent case study In this case study, we design
trajectories for a team of 100 agents that exist in a 100×
100[m] space and [0, 100][s] time span. The team needs to
adhere to the following STL formula,

φ = G[10,90]
[
∥xi − xj∥ ≥ 0.01 ∧ ∥xi − (50, 50)∥ ≤ 5

]

(9)

∀i, j ∈ {1, 2, . . . , 100} and i ̸= j. Note that the above STL
formula has 5150 predicates. In the interval [10, 90][s], the
STL formula dictates every agent to be at least 0.01[m]
apart from every other agent and to be at least 5[m]
close to the centre point (50, 50)[m]. The simulation results
are shown in Figure 9 where the Figures 9a-9c are the
trajectories before the start of the algorithm while Figures 9d-
9f shows the trajectories at the end of j = 1000 iterations, as
mentioned in Algorithm 2. The simulation took 17.84[s] to
complete without parallelisation. The faster computation can
be attributed to the nature of the design of the cost function in
(7), which allows for points that already satisfy the formula
not to be changed. The robustness of the STL formula is
shown in Figure 10, a negative robustness signifies task
satisfaction. Here, the robustness converges to 0, because
the robustness for an always operator reflects the worst-case
scenario. It is important to note that computing the result for
Figure 10 required 12 hours and 10 minutes of computation
time since it had to be performed centrally.

7.0.6 Overall case study In this case study, we demon-
strate the application of the aforementioned scenarios by
setting up the following tasks:

• Agent 1 always stays above 8 units.
• Agents 2 and 4 are required to satisfy the predicate
x2
2 + x2

4 ≤ 2 within the time interval [10, 30][s].
• Agent 3 is required to track an exponential path within

the time interval [20, 60][s].
• Agent 2 is required to repeatedly visit Agent 1 and

Agent 3 every 10s within the interval [30, 50][s].
• Agent 1 is required to maintain at least 1 unit

distance from the other three agents within the interval
[80, 100][s].

The STL formula for the above tasks is as follows:

φ = (x1 ≥ 8) ∧ G[10,30](x2
2 + x2

4 ≤ 2)∧
G[20,60](∥x3 − 50 exp(−0.1t)∥ ≤ 0.05)∧
G[30,50]F[0,10]

(
(∥x2 − x1∥ ≤ 0.5) ∧ (∥x2 − x3∥ ≤ 0.5)

)
∧

F[79.9,80.1]G[0,20]
(
(∥x1 − x2∥ ≥ 1) ∧ (∥x1 − x3∥ ≥ 1)

∧ (∥x1 − x4∥ ≥ 1)
)

The parameter L was increased to 1000, and η was decreased
to 0.001. In Figure 8, we show the resulting trajectories of
each agent generated by MAPS2 satisfying the above STL
formula. The maximum computation time by any agent is
4.611[s].
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(f) x− t axis view at j = 1000

Figure 9. Simulation of trajectory generation for 100 agents for the STL formula (9).
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Figure 10. Robustness of the STL formula in (9)

8 Experiments
We now present an experimental demonstration of the
proposed algorithm. The multi-robot setup involves three
robots, as shown in Figure 1, and consists of 3 mobile
bases and two 6-DOF manipulator arms. The locations
of the three bases are denoted as x1 ∈ R2, x2 ∈ R2, and
x3 ∈ R2, respectively. Base 2 and base 3 are equipped
with manipulator arms, whose end-effector positions are
represented as e1 ∈ R3 and e2 ∈ R3, respectively.

The STL formula defining the tasks is the following,

φ = ∥x1 − x2∥ ≥ 0.6 ∧ ∥x2 − x3∥ ≥ 0.6 ∧ ∥x3 − x1∥ ≥ 0.6∧
G[10,125]∥x1 − 1.8[− cos 0.0698t, sin(0.0698t)]⊤∥ ≤ 0.05∧
G[30,70]∥e1 − [x⊤

1 , 0.35]
⊤∥ ≤ 0.01∧

G[30,70]∥x2 − 1.1[− cos 0.0698t, sin(0.0698t)]⊤∥ ≤ 0.05∧
G[80,120]∥e2 − [x⊤

1 , 0.35]
⊤∥ ≤ 0.01∧

G[80,120]∥x3 − 1.1[− cos 0.0698t, sin(0.0698t)]⊤∥ ≤ 0.05∧
F[180,200]∥x1 − [0, 0]⊤∥ ≤ 0.05∧
F[180,200]

(
∥x2 − [1,−1]∥ ≤ 0.05 ∧ ∥e1 − [x2, 0.6]∥ ≤ 0.05

)
∧

F[180,200]

(
∥x3 − [−1, 1]∥ ≤ 0.05 ∧ ∥e2 − [x3, 0.6]∥ ≤ 0.05

)
.

The above task involves collision avoidance constraints
that are always active given by the subformula φ̄1 = (∥x1 −
x2∥ ≥ 0.6) ∧ (∥x2 − x3∥ ≥ 0.6) ∧ (∥x3 − x1∥ ≥ 0.6).
Next, in the duration [10, 125][s], base 1 surveils the
arena and follows a circular time varying trajectory given
by the subformula φ̄2 = (G[10,125]∥x1 − c1(t)∥ ≤ 0.05)
where c1(t) is the circular trajectory. In the duration
[30, 70][s], end-effector 1 tracks a virtual point 0.35[m]
over base 1 to simulate a pick-and-place task, given
by the subformula φ̄3 = G[30,70]∥e1 − [x⊤

1 , 0.35]
⊤∥ ≤

0.01 ∧ G[30,70]∥x2 − c2(t)∥ ≤ 0.05 where c2(t) is
the circular trajectory. Similarly, in the duration
[80, 120][s], end-effector 2 takes over the task to
track a virtual point 0.35[m] over base 1, given by
the subformula φ̄4 = G[80,120]∥e2 − [x⊤

1 , 0.35]
⊤∥ ≤

0.01 ∧ G[80,120]∥x3 − c2(t)∥ ≤ 0.05. Finally, eventually in
the duration [180, 200][s], the robots assume a final position
given by the subformula φ̄5 = F[180,200]∥x1 − [0, 0]⊤∥ ≤
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effector 2
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Figure 11. Experimental verification of MAPS2 with the setup in Figure 1.

0.05 ∧ F[180,200]

(
∥x2 − [1,−1]∥ ≤ 0.05 ∧ ∥e1 −

[x2, 0.6]∥ ≤ 0.05
)
∧ F[180,200]

(
∥x3 − [−1, 1]∥ ≤

0.05 ∧ ∥e2 − [x3, 0.6]∥ ≤ 0.05
)
.

The results are shown in Figure 11, where the x-axis
represents time in seconds, and the y-axis represents the
predicate functions defined by (5). The dashed line in the
plots represents the predicate functions of the trajectories
obtained by solving the optimisation problem (7), while the
solid line represents the predicate functions of the actual
trajectories by the robots. In the context of (5), negative
values indicate task satisfaction. However, due to the lack
of an accurate model of the robots and the fact that the
optimisation solution converges to the boundary of the
constraints, the tracking is imperfect, and we observe slight
violations of the formula by the robots in certain cases.
Nonetheless, the trajectories generated by the algorithm do
not violate the STL formula. The coloured lines represent the
functions that lie within the validity domain of the formula.
Figure 11a shows that the collision constraint imposed on all
3 bases is not violated, and they maintain a separation of at
least 60 cm. In Figure 11b, base 1 tracks a circular trajectory
in the interval [10, 125] seconds. In Figures 11c and 11d,
the end effectors mounted on top of bases 2 and 3 track a
virtual point over the moving base 1 sequentially. In the last
20 seconds, the bases and end effectors move to their desired
final positions, as seen in Figures 11e and 11f. The maximum
computation time by any robot is 3.611[s]. Figure 12 shows
front-view and side-view at different time instances during
the experimental run2.

9 Conclusion
This work proposed MAPS2, a distributed planner that solves
the multi-robot motion-planning problem subject to tasks
encoded as STL constraints. By using the notion of validity
domain and formulating the optimisation problem as shown
in (7), MAPS2 transforms the spatio-temporal problem into
a spatial planning task, for which efficient optimisation
algorithms already exist. Task satisfaction is probabilistically
guaranteed in a distributed manner by presenting an
optimisation problem that necessitates communication only
between robots that share coupled constraints. Extensive
simulations involving benchmark formulas and experiments
involving varied tasks highlight the algorithms functionality.
Future work involves incorporating dynamical constraints
such as velocity and acceleration limits into the optimisation
problem.
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Notes

1. The project code can be found here https://github.

com/sewlia/Maps2

2. The video of the experiments can be found here: https:
//youtu.be/YkuiPuOerMg
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Figure 12. Front-view and side-view during experimental run with the setup in Figure 1.
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