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Abstract— We address the problem of cooperative manipula-
tion of an object whose tasks are specified by a Signal Temporal
Logic (STL) formula. We employ the Prescribed Performance
Control (PPC) methodology to guarantee predefined transient
and steady-state performance on the object trajectory in order
to satisfy the STL formula. More specifically, we first provide a
way that translates the problem of satisfaction of an STL task
to the problem of state evolution within a user-defined time-
varying funnel. We then design a control strategy for the robotic
agents that guarantees compliance with this funnel. The control
strategy is decentralized, in the sense that each agent calculates
its own control signal, and does not use any information on
the agents’ and object’s dynamic terms, which are assumed
to be unknown. We experimentally verify the results on two
manipulator arms, cooperatively working to manipulate an
object based on a STL formula.

I. INTRODUCTION

The cooperative-manipulation problem considers the con-
trol of multiple robots towards the manipulation of a grasped
object. Robots working in such cooperation have the advan-
tage of sharing the load, and are hence able to manipulate
heavier objects than in single-robot setups [1]. Cooperative
manipulation systems find applications in human-robot in-
teraction, aerial lifting of objects, transportation in cluttered
environments, and industrial automation works.

Unlike the related literature, which mainly considers the
tracking/regulation of the manipulated object, we are here
interested in more complex tasks over time, such as “never
take the object to dangerous regions” or “keep moving the
object from region A to B within a predefined time interval”,
which must be executed via the control actions of the agents.
Such complex tasks can be expressed by temporal logics.
Examples include Linear Temporal Logic (LTL) [2], Metric-
interval Temporal Logic (MITL) [3] and Signal Temporal
Logic (STL); LTL and MITL use automata representations
of the task and require discrete abstractions of the underlying
continuous systems; STL, on the other hand, introduced in
[4], is a formalism used to specify properties of dense-
time, real-valued signals. It allows for inclusion of time and
state bounds of a continuous-time system and hence a useful
formalism to model complex tasks in robotics [5]. Moreover,
STL offers a degree of space robustness, allowing us to
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measure the extent of satisfaction of a signal against a given
formula [6].

This paper addresses the cooperative manipulation prob-
lem under STL tasks for systems with uncertain dynamics.
Our main contribution is the design of a control mechanism
that guarantees that satisfaction of an STL-encoded task for
a cooperatively manipulated object. Firstly, we translate the
problem of STL satisfaction to the problem of state evolution
within a time-varying funnel. Next, we employ the Prescribed
Performance Control (PPC) methodology [7] to guarantee
compliance with this funnel and, consequently, satisfaction
of the task. The control mechanism exhibits the following
attributes. Firstly, it is decentralized in the sense that each
agent calculates its own control signal, without needing to
communicate with the rest of the team. Secondly, it does not
use any information on the dynamics of the robotic agents
and the object or any related estimation/approximation mod-
els. Thirdly, it does not require the use of force/torque sensors
at the grasping points among the agents and the object.
Finally, we avoid the use of approximations in robustness
metrics of STL and consider a richer STL fragment compared
to previous works. To the best of our knowledge, there have
been no other works addressing the cooperative manipulation
problem with STL constraints and uncertain dynamics.

Many works consider STL tasks for multi-agent systems
[8], but without addressing the special case of cooperative
manipulation schemes. The latter exhibit unique challenges
due to their complex dynamics and the interaction of the
robotic agents through their grasping points with the object.
On the other hand, decentralized control of cooperative
manipulators is a widely-studied problem in the literature
[1], [9]–[13]. However, most related works study the prob-
lem of trajectory tracking for the object, possibly with
simultaneous force regulation and state constraints, such
as collision avoidance. On the contrary, we focus on the
cooperative manipulation of an object such that it satisfies
a more general task given by an STL formula. Works such
as [14] and [2] use LTL to achieve multi-robot planning.
However there are certain inherent differences between Lin-
ear Temporal Logic(LTL) and Signal Temporal Logic(STL).
STL is defined over continuous space and time, and is
accompanied by a robustness metric signifying the degree of
satisfaction of a formula. In contrast, LTL is a proposition
based logic evaluated over infinite sequence of states without
time constraints. Temporal logics were also used in [3] for
cooperative manipulation schemes in the form of MITL con-
straints, resorting however to workspace discretization and
abstraction techniques, which we avoid in this work. MITL



is a proposition based logic that allows timing constraints on
temporal operators but fails to define behaviour of continuous
signals in space and time. In [15], a high-level and a low-
level task planner are used to satisfy a metric temporal logic
specification but are limited to manipulation with a single
robotic arm. Compared to [16], which studies prescribed
performance control for STL tasks, we consider a richer
STL fragment, provide a model-free controller, and deal with
conjunctions in a non-hybrid control framework.

The rest of the paper is organized as follows. Section II
presents preliminaries and notation used in the rest of the
work. The problem formulation along with the system model
are given in Section III and in Section IV we design the
controller using the PPC method. Section V presents exper-
imental verification of the theory developed and conclusions
are laid out in Section VI.

II. NOTATION AND PRELIMINARIES

A. Notation

The set of natural numbers is denoted by N and the set
of real numbers by R. With n ∈ N, Rn is the set of n-
coordinate real-valued vectors and Rn≥0 is the set of real n-
vector with non-negative elements; In represents the n × n
identity matrix and 0n×m represents the n×m sized matrix
with all zero entries. For a, b ∈ R3, S(a) denotes a skew-
symmetric matrix defined as S(a)b = a × b, where × is
the vector-cross product operator; C1 represents the class of
continuously differentiable functions. We further use M =
R3 × T3, where T3 is the 3D torus, and B = {>,⊥} (True,
False). Finally, we use A = blckdiag{A1, A2, . . . , AN} to
denote the block diagonal matrix with matrices Ai ∈ Rp×p
on its diagonal, where N, p ∈ N.

B. Signal Temporal Logic (STL)

Let x : R≥0 → Rn be a continuous-time signal. Signal
Temporal Logic [4] is a predicate-based logic with the
following syntax,

φ = > | µ | ¬φ | φ1 ∧ φ2 | φ1U[a,b]φ2 (1)

where φ1, φ2 are STL formulae and µ is a predicate of the
form µ : Rn × R≥0 → B defined via a predicate function
p : Rn × R≥0 → R as

µ =

{
> p(x, t) ≥ 0

⊥ p(x, t) < 0
. (2)

The satisfaction relation (x, t) |= φ indicates that signal x
satisfies φ at time t and is defined recursively as follows:

(x, t) |= µ ⇔ p(x, t) ≥ 0

(x, t) |= ¬φ ⇔ ¬((x, t) |= φ)

(x, t) |= φ1 ∧ φ2 ⇔ (x, t) |= φ2 ∧ (x, t) |= φ2

(x, t) |= φ1U[a,b]φ2 ⇔ ∃t1 ∈ [t+ a, t+ b] s.t. (x, t1) |= φ2

∧ ∀t2 ∈ [t, t1], (x, t2) |= φ1.

A signal x satisfies the Until operator, (x, t) |= φ1U[a,b]φ2,
if φ1 holds at all times before φ2 holds and φ2 holds at some
time instance between a and b.

The robust semantics for STL are defined by a real-valued
function ρφ(x, t). In particular, it holds that (x, t) |= φ
if ρφ(x, t) > 0, where the value of ρφ(x, t) = p(x(t), t)
indicates the level of satisfaction of the signal x(t) at time
t. The STL syntax we consider here is

ψ ::= > | µ | ¬µ (3a)
φ ::= ψ | G[a,b]ψ | F[a,b]ψ | ψ1U[a,b]ψ2 | φ1 ∧ φ2 | φ1 ∨ φ2

(3b)

where ψ,ψ1 and ψ2 are formulae of class ψ given in (3a),
φ1, φ2 are formulae of class φ given in (3b) and a, b ∈ R≥0

with a ≤ b. The following temporal operators can be defined
from (1); eventually: F[a,b]ψ ≡ >U[a,b]ψ, always: G[a,b]ψ ≡
¬F[a,b]¬ψ and disjunction: φ1 ∨ φ2 ≡ ¬(¬φ1 ∧ ¬φ2).

More details on STL semantics can be found in [8].
In the following, each part of φ that corresponds to a
different predicate µ (and a predicate function), along with
the respective temporal operator, is called a sub-formula.

C. Prescribed Performance Control

The concepts and techniques of Prescribed Performance
Control (PPC), introduced in [7], are used in this work to
achieve an STL task for a cooperatively manipulated object;
PPC describes the behavior where a tracking error e(t)
evolves strictly within a predefined region that is bounded
by certain functions of time, achieving prescribed transient-
and steady-state performance. The mathematical expression
of prescribed performance is given by the inequality −γ(t) <
e(t) < γ(t), where γ(t) is a smooth and bounded decaying
function of time satisfying limt→∞ γ(t) > 0, called perfor-
mance function. We focus on the special case of exponential
performance functions γ(t) = (γ0−γ∞) exp(−lt)+γ∞, with
γ0 ≥ γ∞ and l ∈ R≥0 appropriately chosen constants. More
specifically, the constant γ0 = γ(0) is selected such that
γ0 > |e(0)|, and the constant γ∞ = limt→∞ γ(t) represents
the maximum allowable size of the tracking error e(t) at
steady state, which may be set arbitrarily small to a value
reflecting the resolution of the measurement device, thus
achieving practical convergence of e(t) to zero. Moreover,
the decreasing rate of γ(t), which is affected by the constant
l in this case, introduces a lower bound on the required
speed of convergence of e(t). Therefore, the appropriate
selection of the performance function imposes performance
characteristics on the tracking error e(t).

III. PROBLEM FORMULATION

We begin by providing the model of the cooperative ma-
nipulation problem consisting of the dynamics of the agents
and the object. We provide now the problem setup. Consider
a workspaceW ⊂ R3 with N robotic agents rigidly grasping
an object as seen in Figure 1, with N = {1, . . . , N}. The
agent’s reference frame is denoted by {Ai}, the frames of
end-effectors as {Ei} for i = 1, 2, . . . , N , the inertial frame
by {I} and the frame corresponding to object’s center of
mass as {O}. Each agent is assumed to know the fixed
distance pi/o from {O} to {Ei} in the {I} frame. The
agents are considered to be robotic arms, possibly mounted



on mobile platforms that have access to the whole workspace.
The arms are assumed to grasp rigidly the object thereby
being able to exert forces/torques along every direction.

{O}

{A1} {A2}

{E1}
{E2}

{I}

p1 p2
po

p1/o
p2/o

Fig. 1: Two arms rigidly grasping an object at the Smart
Mobility Lab (SML), KTH.

We describe next the agents’ and object’s dynamics.
1) Agent dynamics: Let qi ∈ Rni denote the joint-space

variables of agent i ∈ N , with ni ≥ 6, and pi ∈ R3, ηi ∈ T3

the position and Euler-angle orientation of agent i’s end-
effector. Moreover, let vi ∈ R6 be the velocity of agent i’s
end-effector given by vi = [ṗ>i , ω

>
i ]>, where ωi ∈ R3 is the

respective angular velocity; vi is related to qi via the agent’s
kinematic Jacobian matrix Ji : Rni×R6×ni as vi = Ji(qi)q̇i.
We assume that the agents operate away from kinematic
singularities (where Ji(qi) loses rank), which leads to the
well-defined task-space agent dynamics [17]

Mi(qi)v̇i+Ci(qi, q̇i)vi+gi(qi)+wi(qi, q̇i, t) = ui−λi (4)

where Mi : Rni → R6×6 is the task-space positive definite
mass matrix, Ci : R2ni → R6×6 the task-space Coriolis
matrix, gi : Rni → R6 the task-space gravity vector,
wi : R2ni × R≥0 → R6 represents model uncertainties and
bounded external disturbances, ui ∈ R6 is the task-space
input wrench and λi ∈ R6 is the generalized force vector that
agent i exerts on the object. The vector fields Mi(·), Ci(·),
gi(·), are continuously differentiable [17], and we further
assume that wi(qi, q̇i, t) is continuous in qi and q̇i for each
fixed t ≥ 0, and uniformly bounded in t for each fixed
(qi, q̇i) ∈ R2ni . Nevertheless, in this work we assume that
all the dynamic terms Mi(·), Ci(·), gi(·), wi(·) are unknown
and cannot be used in the control design. Similarly, we do
not employ any force-related sensor unit and hence λi is
also unknown to agent i. The only information that agent i
has access to is its joint variables (qi, q̇i), from which it can
derive its end-effector’s pose (pi, ηi) and velocity vi through
the forward kinematics, i ∈ N . The dynamics (4) can be
written in vector form as:

M(q)v̇ + C(q, q̇)v + g(q) + w(q, q̇, t) = u− λ, (5)

where v = [v>1 , . . . , v
>
N ] ∈ R6N , M = diag{[Mi]} ∈

R6N×6N , C = diag{[Ci]} ∈ R6N×6N , g = [g>1 , . . . , g
>
N ]> ∈

R6N , w = [w>1 , . . . , w
>
N ]> ∈ R6N , u = [u>1 , . . . , u

>
N ]> ∈

R6N and λ = [λ>1 , . . . , λ
>
N ]> ∈ R6N .

2) Object dynamics: The pose and velocity of the object’s
center of mass are denoted by x0 = [p>o , η

>
o ]> ∈M and vo =

[ṗ>o , ω
>
o ]> ∈ R6, respectively, where po ∈ R3, ηo ∈ R3,

and ωo ∈ R3 are the position, Euler-angle orientation, and
angular velocity of the object’s center of mass. The dynamics
of the object are given by

ẋo = J−1
or (xo)vo, (6a)

Mo(xo)v̇o + Co(xo, vo)vo + go(xo) + wo(t) = λo (6b)

where Mo : M→ R6×6 is the positive-definite inertia matrix,
Co : M×R6 → R6×6 is the Coriolis matrix, go : M→ R6 is
the gravity vector and wo : R≥0 → R6 is a bounded vector
of external disturbances. Additionally, Jor : M → R6×6 is
the object representation Jacobian [3] and λo ∈ R6 is the
force vector acting on the object’s center of mass. The terms
Mo(·), Co(·), go(·) are continuously differentiable and we
assume that wo(t) is bounded. The matrix Jor and its inverse
are well-defined when the object’s pitch angle θo (second
entry of ηo) evolves in the set (−π2 ,

π
2 ), which is assumed

to be the case. Additionally and similarly to the agents, the
object’s dynamic terms Mo(·), Co(·), go(·), wo(·) and force
λo are considered to be unknown and cannot be used in the
control design.

3) Coupled dynamics: The grasping rigidity gives rise to
the geometric relations

pi = po + pi/o, ηi = ηo + ηi/o (7)

where pi/o and ηi/o are the constant position and orientation
offsets among the ith end-effector and the object’s center of
mass. By differentiating (7), we obtain

vi = Joi(qi)vo (8)

where Joi : Rni → R6×6 is the object-to-i’th agent Jacobian

Joi(qi) =

[
I3 S(−pi/o(qi))

03×3 I3

]
(9)

for all i ∈ N , which is invertible due to the grasp rigidity.
Note that, by inverting (7) and (8), agent i can derive the pose
and velocity of the object. The coupled dynamics, derived in
[3], are given by

M̃(q)v̇o + C̃(q, q̇)vo + g̃(q, q̇) + w̃(q, t) = G>(q)u (10)

where M̃(q) = Mo(q) + G>(q)M(q)G(q), C̃(q, q̇) =
Co(q, q̇)+G>(q)M(q)Ġ(q)+G>(q)C(q, q̇)G(q), g̃(q, q̇) =
go(q) +G>(q)g(q) and w̃(q, t) = wo(t) +G>(q)w(q, t). M̃
being positive definite, and G : Rn → R6N×6 is the system’s
grasp matrix, given by G(q) = [J>o1(q1), . . . , J>oN (qN )]>. We
note that G has full column rank owing to the grasp rigidity.

The problem at hand is the design of a decentralized
control policy for ui, i ∈ N , in (4), such that the object
satisfies a user-defined STL task. More formally:

Problem 1: Consider a system of N agents rigidly grasp-
ing an object with unknown coupled dynamics (6), (10). Let
an STL formula φ (as in (3)) over the object trajectory xo(t).
Design a decentralized control policy for ui, i ∈ N , in (4),
that leads to the satisfaction of ϕ, i.e., (xo, t) |= ϕ.



IV. MAIN RESULTS

This section provides the main results of this work. In
Section IV-A, we first provide a mechanism to encode the
STL task in performance functions. In Section IV-B, we
design a decentralized controller that guarantees evolution
of the states inside the performance functions ensuring the
satisfaction of the STL task.

A. Encoding STL tasks as PPC constraints

As mentioned in Section II-B, an STL formula φ consists
of temporal operators along with predicates µ (see (3)),
which are encoded via C1 functions p(xo, t). In this work,
we exploit the PPC formulation and appropriately map these
predicate functions p(xo, t) to C1 functions h(xo, t), such
that µ = > if and only if −γh(t) < h(xo(t), t) < γh(t),
where γh(t) is a user-defined performance function; that is,
the predicate satisfaction is equivalent to the containment of
h(xo(t), t) in the interval (−γh(t), γh(t)).

We now describe in more detail the construction of the
performance and predicate functions for the fragment of the
form (3b). The STL formula at hand can be written as φ =
φ1 ∨ φ2 ∨ · · · ∨ φR, where each φi is a conjunction φi =
φi,1 ∧ φi,2 ∧ · · · ∧ φi,Mi

, and each φi,j is of the form

ψ | G[a,b]ψ | F[a,b]ψ, (11)

for all j ∈ {1, . . . ,Mi}, i ∈ {1, . . . , R} for positive con-
stants Mi and R and where ψ is a formula of the form (3a).
Here, R represents the number of disjunction components
and Mi represents the number of conjunction components
corresponding to each i-th disjunction component. The until
operator ψ1U[a,b]ψ2 is equivalent to the conjunction F[t1]ψ2∧
G[a,t1]ψ1, with t1 ∈ (a, b], and is hence incorporated in the
aforementioned formulation.

We consider a bottom-up approach and consider first a
formula φi,j of the form (11). For each φi,j , i ∈ {1, . . . , R},
j ∈ {1, . . . ,Mi}, if φi,j = G[ai,j ,bi,j ]ψi,j or φi,j =
F[ai,j ,bi,j ]ψi,j , then we opt to activate φi,j only in the specific
time interval [ai,j , bi,j ]. More specifically, we define smooth
switching functions βi,j(t) such that

βi,j(t) =


0, t < t?i,j − δ
1, t ∈ [t?i,j , bi,j ]

0, t > bi,j + δ,

(12)

where δ > 0 is the ”rise and fall” time, and we set βi,j(t) = 1
if φi,j = ψi,j (i.e., there are no temporal constraints). The
time instants t?i,j ∈ R≥0 are chosen a priori as

t?i,j ∈

{
[ai,j ] if φi,j = G[ai,j ,bi,j ]ψ

[ai,j , bi,j ] if φi,j = F[ai,j ,bi,j ]ψ.

In the experiments, t?i,j for the eventually(F) operator is
chosen randomly in the interval (ai,j , bi,j ]. Next, let the pred-
icates µi,j and the respective predicate functions pi,j(xo, t)
that correspond to ψi,j of the subformulae (11). We map

pi,j(xo, t) to C1 functions hi,j(xo, t) such that

µi,j =

{
>, −γhi,j

(t) < h̄i,j(xo, t) < γhi,j
(t),

⊥, otherwise

which implies

pi,j(x(t), t) ≥ 0⇔ −γhi,j
(t) < h̄i,j(xo(t), t) < γhi,j

(t),
(13)

where
h̄i,j(x0, t) = βi,j(t)hi,j(x0, t). (14)

Here, γhi,j (t) are appropriately chosen performance func-
tions of the form γhi,j (t) = (γ0

hi,j
−γ∞hi,j

) exp(−li,jt)+γ∞hi,j

(see Section II-C), and the incorporation of βi,j in h̄i,j
accommodates the local activation of the temporal subfor-
mulae of the form G[ai,j ,bi,j ]ψi,j ,F[ai,j ,bi,j ]ψi,j ; intuitively,
we aim to force hi,j(xo, t) to evolve inside the funnels
prescribed by γhi,j

(t), such that an appropriate choice of
γhi,j (t) will yield the satisfaction of the STL task. Apart
from achieving satisfaction of the predicates, the PPC formu-
lation allows for greater control over the rate of convergence
and robustness of hi,j(xo, t), since the latter are explicitly
shaped by the user-defined performance functions γhi,j

(t).
These functions also accommodate the temporal constraints
imposed by the operators G[ai,j ,bi,j ],F[ai,j ,bi,j ]. For instance,

let φi,j = G[5,10]

(
‖xo(t)‖ < ε

)
. Then, pi,j(xo, t) = ε −

‖xo‖, hi,j(xo, t) = ‖xo‖, and we choose γhi,j
such that

γhi,j
(5) = ε, implying γhi,j

(t) < ε, for all t > 5. Note that,
subformulae of the form G[ai,j ,bi,j ]ψ and ψ must be satisfied
initially, i.e., at t = ai,j and t = 0, respectively. This is
formalized in the next assumption:

Assumption 1: For every φi,j = ψ, it holds that
pi,j(xo(0), 0) ≥ 0, and for every φi,j = G[ai,j ,bi,j ]ψ, it holds
that pi,j(xo(ai,j), 0) ≥ 0, j ∈ {1, . . . ,Mi}, i ∈ {1, . . . , R}.

Conjunctions: Consider now the formula φi = φi,1 ∧
φi,2 ∧ · · · ∧ φi,Mi

where each φi,j is of the form (11),
i ∈ {1, . . . , R}. Let h̄i,j(xo, t) be the predicate function
corresponding to each φi,j , constructed as in (14). We
accommodate the aforementioned conjunction by defining
the vector h̄i(xo, t) =

[
h̄i,1 · · · h̄i,Mi

]>
; all h̄i,j , j ∈

{1, . . . ,Mi}, must satisfy (13) to guarantee satisfaction of
φi. The following example illustrates the construction of h̄i.

Example 1: Consider the STL formula φi = G[5,10](‖xo−
A‖p < 0.05)∧F[5,15](‖xo−B‖p < 0.05)∧G[10,20]

(
φo−π <

π
6

)
∧ (‖xo − C‖p < 1)U[20,25](‖xo − C‖p < 0.05)

where A,B and C are some desired positions for
xo. The formula φi can be broken down into four
subtasks, namely, 1) G[5,10](‖xo − A‖p < 0.05)
which requires the object xo between 5s and 10s to
match configuration A within a margin of 0.05; 2)
F[5,15](‖xo − B‖p < 0.05) which requires the object xo
between 5s and 15s to eventually match configuration
B within a margin of 0.05; 3) G[10,20]

(
φo − π < π

6

)
requires the object to assume a roll angle of π between
10s and 20s within a margin of π/6; and finally 4)
(‖xo − C‖p < 1)U[20,25](‖xo − C‖p < 0.05) requires the



object to assume configuration C with an accuracy of 1
until the object gets close enough to C within the margin
0.05 in the interval [20, 25]s. The function h̄i(xo, t) =
[h̄i,1(xo, t), h̄i,2(xo, t), h̄i,3(xo, t), h̄i,4(xo, t), h̄i,5(xo, t)]

>,
corresponding to φi, is of the form,

h̄i(xo, t) =


βi,1(t) hi,1(xo)
βi,2(t) hi,2(xo)
βi,3(t) hi,3(xo)
βi,4(t) hi,4(xo)
βi,5(t) hi,5(xo)

 =


βi,1(t) ‖xo −A‖p
βi,2(t) ‖xo −B‖p
βi,3(t) (φo − π)
βi,4(t) ‖xo − C‖p
βi,5(t) ‖xo − C‖p

 ,
where Mi = 5 and βi,j(t) are switching functions of the
form (12), j ∈ {1, . . . , 5}.

Disjunctions: Finally, we consider disjunctions of the
form φ = φ1 ∨φ2 ∨ · · · ∨φR where each φi is a conjunction
of subformulas of the form (11), i ∈ {1, . . . , R}. As
discussed before, each φi corresponds to a predicate function
hi(xo, t) ∈ RMi ; Since satisfying φi for any i, satisfies φ, we
use a cost metric to decide on initially choosing such a φi.
More specifically, we define the cost function Ji(hi(xo, t0)),
which captures the robust satisfaction of the STL subtask φi,
with t0 being the first time instant appearing in the subformu-
las φi,j , i ∈ {1, . . . , R}, j ∈ {1, . . . ,Mi}. One such exam-
ple of Ji is Ji(h(xo, t0)) = 1

Mi

∑
j∈{1,...,Mi}

∣∣∣hi,j(xo,t0)
γi,j(t0)

∣∣∣,
which chooses a φi that is, on average, furthest from the
funnel boundaries at t0. We select then the subtask φ`
that satisfies ` = arg mini Ji(hi(xo(t0), t0)). We do this
automatically by defining the variable

k`(t) =

{
1 if ` = arg mini Ji(h(xo(t0), t0))

0 otherwise.

and finally selecting the predicate function for φ as h̃ =
[h̃>1 , . . . , h̃

>
R]>, with

h̃(xo, t) = K̄(t)
[
h̄1(xo, t) · · · h̄R(xo, t)

]>
where K̄(t) = blckdiag{[kiIMi ]i∈{1,...,R}}. An example of
this strategy is shown below.

Example 2: Consider the STL formula, φ =[
G[5,10](‖xo − A‖p < 1) ∧ F[10,15](‖xo − B‖p <

0.05)
]
∨
[
F[5,15](‖xo − C‖p < 0.05)

]
where A,B and

C are desired attainable positions for xo. The predicate
function corresponding to φ is

h̃(xo, t) =

 k1(t) 0 0
0 k1(t) 0
0 0 k2(t)

 β1(t) ‖xo −A‖p
β2(t) ‖xo −B‖p
β3(t) ‖xo − C‖p

 .
Remark 1: In the aforementioned procedure on the deriva-

tion of k` for the disjunction sub-formulae, the minimiza-
tion involves the time instant t0 (see Ji(h(xo(t0), t0)).
For instance, the algorithm might choose the index ` =
arg mini Ji(h(xo(t0), t0)) at t = t0, choosing to sat-
isfy φ`, but there might exist t′ and `′ such that `′ =
arg mini Ji(h(xo(t0), t)) 6= `, for all t ≥ t′. We can extend
the proposed algorithm to handle such cases by considering
a time-varying index `(t) = arg mini Ji(h(xo(t0), t)). To

retain the differentiability of h̃, we can replace the min()
operator with a differentiable approximation (see, e.g., [16].).
We note that this stage of planning occurs offline, based on
the STL formula that is available to the agents.

B. Control Design

In this section, we present the decentralized control design
that guarantees compliance with the funnel of the previous
section and consequently, satisfaction of the STL task.
Before proceeding, we impose the following required as-
sumptions.

Assumption 2: The object’s pose does not result in a
singular Jor (xo(t)), i.e. θo(t) ∈

(
− π

2 ,
π
2

)
, for all t ≥ 0.

Assumption 3: The function h̃(xo, t) satisfies the follow-
ing properties:

• h̃(xo, t) is cont. differentiable in M×R≥0 and h̃, ∂h̃
∂xo

,

and ∂h̃
∂t are uniformly bounded in t for all xo ∈M.

• For every c1 > 0, there exists a c2 > 0 such that {xo ∈
M : ‖h̃(xo, t)‖ ≤ c1} ⊂ {xo ∈M : ‖xo‖ ≤ c2}.

Assumption 2 is required [17] for the controllability of
the object’s pose (see (6a)). Assumption 3 provides simple
differentiability and boundedness conditions for h̃ and that
boundedness of h̃(xo, t) implies the boundedness of xo.

Next, let ` be the index of the chosen subformulae to
be satisfied in the disjunction operator, i.e., k` = 1 and
ki = 0, for all i ∈ {1, . . . , R}\{`}. Then, the task to be
satisfied is given by the function h̃`(xo, t) = h̄`(xo, t) =
[h̄`,1, . . . , h̄`,M`

]>. We provide now the control design.
Step I-a. Choose the performance functions γh(t) =

diag{γh`,1
, γh`,2

, . . . , γh`,M`
} and γh`,j

(t) = (γ0
h`,j
−

γ∞h`,j
) exp(−l`,jt) +γ∞h`,j

, with γ0
h`,j

> h̄`,j(xo(0), 0); l`,j ∈
R>0 and γ∞h`,j

are chosen such that, when −γh`,j
(t) <

h̄`,j(xo, t) < γh`,j
(t) holds, the task is satisfied, for j ∈

{1, 2, . . . ,M`}. In the special case that φ`,j has the form
‖xo −A‖ < z, for some xo ∈M, z > 0, we set γ∞h`,j

= z.
Step I-b. Define the normalised errors ξh ∈ RL by

ξh = [ξh`,1
, . . . , ξh`,M`

]> = γ−1
h (t)h̄`(xo, t) (15)

and design the reference velocity vr as

vr(ξh, t) = −gsJor (xo)
∂h̄`
∂xo

>

γ−1
h (t)rh(ξh)εh(ξh) (16)

where gs is a positive constant and the signals εh :
(−1, 1)M` → RM` and rh : (−1, 1)M` → RM`×M`

are εh(ξh) = [εh`,1
(ξh`,1

), . . . , εh`,M`
(ξh`,M`

)]>, rh(ξh) =
diag{[rh`,j

(ξh`,j
)]j∈{1,...,M`}}, with

εh`,j
= ln

(1 + ξh`,j

1− ξh`,j

)
, rh`,j

=
2

1− ξ2
h`,j

, j ∈ {1, . . . ,M`}.

Step II follows the lines presented in [3].
Step II-a. Define the velocity error ev ∈ R6 as,

ev = [ev1 , . . . , ev6 ]> = vo − vr(ξh, t), (17)

and velocity performance functions γv(t) =
diag{γv1 , γv2 , . . . , γv6} where γvn(t) = (γ0

vn −



γ∞vi ) exp(−lvnt) + γ∞
vn

, with parameters γ0
vn > |evn(t0)|,

γ∞vi ∈ (0, γ0
vn) and lvn > 0, ∀n ∈ {1, . . . , 6}.

Step II-b. Define the normalised velocity errors ξv ∈ R6:

ξv = [ξv1 , . . . , ξv6 ]> = γ−1
v (t)ev, (18)

where γv = diag{[γvm ]m∈{1,...,6}}, and design the decen-
tralized control law as

u(ξh, ξv, t) =

u1(ξh, ξv, t)
...

uN (ξh, ξv, t)

 = −CgG?(q)γ−1
v (t)rv(ξv)εv(ξv)

(19)
where G?(q) = [J−1

o1 (q1), . . . , J−1
oN (qN )] ∈ R6N×6,

Cg = gvdiag{[ciI6]i∈N } ∈ R6N×6N and the sig-
nals εv : (−1, 1)6 → R6 and rv : (−1, 1)6 →
R6×6 are εv(ξv) = [εv1(ξv1), . . . , εv6(ξv6)]>, rv(ξv) =
diag{[rvn(ξvn)]n∈{1,...,6}}, with

εvn = ln
(1 + ξvn

1− ξvn

)
, rvn =

2

1− ξ2
vn

, n ∈ {1, . . . , 6}.

Note that the STL planning, i.e., the design of performance
functions in Step I-a and Step II-a is performed offline,
whereas the control input (19) is applied online by the agents.

Remark 2: The control protocol guarantees the funnel
containment by enforcing the normalized errors ξh`,j

, ξvi
to remain strictly within (−1, 1), which is equivalent to
guaranteeing the boundedness of the transformed signals
εh`,j

, εvi , respectively. These signals, which are used in
the control design, operate similarly to reciprocal barrier
functions [18]. In particular, they admit higher negative or
positive values as h̄`,j(xo, t) and evi approach the funnel
boundaries, enforcing in that way the funnel containment
while implicitly counteracting the unknown dynamic terms.

The correctness of the proposed control scheme is proven
in the following theorem.

Theorem 1: Consider N agents rigidly grasping an object
with coupled dynamics (10) subject to an STL formula φ

of the form (3). Assume that λmin

(
∂h̄`

∂xo

∂h̄`

∂xo

>)
≥ κ > 0,

for all t ≥ 0. Then the decentralized control (19) guarantees
|h̄`,j(xo(t), t)| < γ`,j(t), for all t ≥ 0, and the boundedness
of all closed loop signals.

Proof: Consider first the dynamics of the normalised
errors ξ̇h = γ−1

h (t)( ˙̄h`(xo, t)− γ̇h(t)ξh), ξ̇v = γ−1
v (t)(ėv −

γ̇v(t)ξv), which, after using (10), (17), (16) and (19), become

ξ̇h = fh(ξh, t)

= −gs
∂h̄`

∂xo
γ−1
h (t)γ−1

h (t)rh(ξh)εh(ξh)+

γ−1
h (t)

( ∂h̄`

∂xo
J−1
or (xo)γv(t)ξv +

∂h̄`

∂t
− γ̇h(t)ξh

)
, (20a)

ξ̇v = fv(ξh, ξv, t)

= γ−1
v (t)

(
M̃−1(q)

[
− gvγ−1

v (t)rv(ξv)εv(ξv)−

C̃(q, q̇)vo − h̃(q, q̇)− w̃(q, t)
]
− v̇r(ξh, t)− γ̇v(t)ξv

)
, (20b)

which, by using (15)-(19), can be written compactly as

ξ̇ = f(ξ, t) =

[
fh(ξ, t)
fv(ξ, t)

]
(21)

where ξ = [ξ>h , ξ
>
v ] ∈ RM`+6. Define next the open and

nonempty set Ωξ = Ωξh × Ωξv ⊂ RM`+6 with Ωξh =
(−1, 1)M` and Ωξv = (−1, 1)6. We now proceed in two
steps: We first prove that there exists a maximal solution
ξ : [t0, τmax) → Ωξ to (21) and then show that τmax = ∞
which then completes the proof. By choosing γh(t) and γv(t)
as discussed in Steps I-b, II-a, respectively, and owing to
Assumptions 1 and 2, we ensure that ξ(t0) ∈ Ωξ. In view
of (10), (15)-(19), and Assumptions 2, 3, one can conclude
that f(ξ, t) is continuous in t and locally Lipschitz in ξ over
Ωξ. Therefore, [19, Theorem 54] dictates the existence of a
maximal solution ξ : [t0, τmax)→ Ωξ. Thus,

ξh`,j
(t) =

h̄`,j(xo, t)

γh`,j
(t)

∈ (−1, 1), (22a)

ξvn(t) =
evn(t)

γvn(t)
∈ (−1, 1), (22b)

∀j ∈ {1, . . . ,M`}, n ∈ {1, . . . , 6}, t ∈ [t0, τmax) from
which we conclude h̄`,j(xo, t) and evn(t) are bounded by
γh`,j

(t) and γvn(t) respectively, for j ∈ {1, . . . ,M`}, n ∈
{1, . . . , 6}, t ∈ [t0, τmax). Consider now the positive definite
and radially unbounded function Vh(εh) = 1

2ε
>
h εh. Its time

derivative reads V̇h = ε>h (ξh)rh(ξh)ξ̇h, and, after using
(20a),

V̇h ≤ −gs
∥∥∥ε>h (ξh)rh(ξh)γ−1

h (t)
∂h̄`

∂xo

∥∥∥2+

ε>h (ξh)rh(ξh)γ−1
h (t)

( ∂h̄`

∂xo
J−1
or (xo)γv(t)ξv +

∂h̄`

∂t
− γ̇h(t)ξh

)
,

Note next that γv(t) and γ̇(t) are bounded for all t ≥ t0,
and ‖ξh‖ ≤

√
M`, ‖ξv‖ ≤

√
6, for all t ∈ [t0, τmax)

from (22). In view of Assumption 3, the boundedness of
h̄`,j(xo, t) from (22) implies the boundedness of xo and the
boundedness of ∂h`(xo,t)

∂xo
, ∂h`(xo,t)

∂t . Moreover, Assumption 2
and the continuity of J−1

or implies its boundedness. Note that
(22) imply that the aforementioned bounds are independent
of τmax. Hence, V̇h reduces to

V̇h ≤− gsλmin

( ∂h̄`
∂xo

∂h̄`
∂xo

>)
‖ε>h (ξh)rh(ξh)γ−1

h (t)‖2+

‖ε>h (ξh)rh(ξh)γ−1
h (t)‖B̄h,

where B̄h is a constant independent of τmax, satisfying
B̄h ≥

∥∥∥ ∂h̄`

∂xo
J−1
or (xo)γv(t)ξv + ∂h̄`

∂t − γ̇h(t)ξh

∥∥∥. Therefore,

one concludes that V̇h < 0⇔ ‖ε>h (ξh)rh(ξh)γ−1
h (t)‖ > B̄h

gsκ
,

which, by noting rhm > 2, is equivalent to,

V̇h < 0⇔ ‖εh(ξh)‖ >
B̄h max{γ0

h`,j
}j∈(1,...,M`)

gsκ
.

Therefore, it holds that ‖εh(ξh)‖ ≤ ε̄h, where

ε̄h = max
{
‖εh(ξh(0))‖,

B̄h max{γ0
h`,j
}j∈(1,...,M`)

gsκ

}



∀t ∈ [t0, τmax), and by invoking the inverse logarithmic
function,

−1 <
exp (−ε̄h)− 1

exp (−ε̄h)− 1
= ξ

h
≤ ξh`,j (t) ≤ ξ̄h =

exp (ε̄h)− 1

exp (ε̄h)− 1
< 1.

(23)
Hence, vr(ξh, t) in (16) and consequently vo = γv(t)ξv +
vr(ξh, t) remain bounded for all t ∈ [0, τmax). Proceeding in
a similar manner with the function Vv = 1

2ε
>
v εv , we conclude

that ‖εv(ξv)‖ ≤ ε̄v , where

ε̄v = max
{
‖εv(ξv(0))‖,

B̄v max{γ0
hn
}n∈(1,...,6)

gvλmin(M̃)

}
∀t ∈ [t0, τmax), where λmin(·) denotes the minimum eigen-
value; by invoking the inverse logarithmic function, we
obtain

−1 <
exp (−ε̄v)− 1

exp (−ε̄v)− 1
= ξ

v
≤ ξhn(t) ≤ ξ̄v =

exp (ε̄v)− 1

exp (ε̄v)− 1
< 1,

(24)
for all n ∈ {1, . . . , 6}, t ∈ [t0, τmax), and hence the bounded-
ness of the proposed control law (19). More details regarding
this step are provided in [3, Sec. 4.1]. What remains to be
shown is that τmax =∞. Towards this end, note from (23),
(24) that ξ(t) ∈ Ω′ξ, where Ω′ξ is a compact subset of Ωξ.
Therefore, by invoking [19, Prop. C.3.6], we conclude the
forward completeness of the solution and τ =∞.

Remark 3: The satisfaction of λmin

(
∂h̄`

∂xo

∂h̄`

∂xo

>)
≥ κ > 0

is related to the number and structure of the STL sub-
tasks encoded in h̄`. More specifically, it requires the matrix
∂h̄`

∂xo

∂h̄`

∂xo

>
∈ RM`×M` to have full rank M`, which imposes

the requirement on the rank of ∂h̄`

∂xo
∈ RM`×6 to be M`. The

latter leads to the following necessary conditions. Firstly,
the number M` of sub-tasks must not be larger than six, i.e.,
M` ≤ 6. Intuitively, the number of tasks the robotic system
can execute simultaneously is restricted by the number of
degrees of freedom in the task space, which is six. The
overall number of sub-tasks can be increased by defining
h̄` to encode more tasks that do not overlap in time; we
omit the formal description, however, for ease of exposition.
Secondly, ∂h̄`

∂xo
must have linearly independent rows, which

translates to the requirement of linearly independent sub-
tasks encoded in h̄`. One can identify tasks that do not satisfy
this assumption and remove potential conflicting dependen-
cies a priori. It should be stressed, however, that condition
λmin

(
∂h̄`

∂xo

∂h̄`

∂xo

>)
≥ κ > 0 is only a sufficient condition for

the theoretical analysis of the proposed control algorithm;
practically, the latter may guarantee the satisfaction of the
STL tasks even if the condition is not satisfied.

V. EXPERIMENTS

We consider N = 2 six degree-of-freedom HEBI-Robotics
arms1 rigidly grasping a wooden box of dimensions 29cm×
30.5cm × 17cm, and weight 2.05kg, as depicted in Figure
1. The robots get the object’s position (xo) and velocity (vo)
from the coupled object-agent kinematics as mentioned in

1The video of the experiments can be found here: https://youtu.
be/CfoWh5PEYPo

Section III.3. The arms lack an on-board computer and thus
communicate the states (xo, vo) to a central computer that
calculates the reference velocity and the control command.
The central computer is an eight-core 1.6 GHz CPU with 16
GB of RAM, and the communication frequency is 150Hz.
The arms share the load equally i.e. c1 = c2 = 0.5. The
experiments were performed by cancelling an estimate of
gravity forces on the arms and object.

The object’s task is encoded in the formula
φ := φ1 ∧ φ2 ∧ φ3 ∧ φ4 ∧ φ5 where φ1 = (‖xo − A‖ <
2.2)U[0,20](‖xo −B‖ < 4), φ2 = G[20,45](‖xo − C‖ < 2.5),
φ3 = F[45,60](‖xo −D‖ < 2.2), φ4 = F[60,75](‖xo − E‖ <
3) and φ5 = F[75,90](‖xo − F‖ < 3), with
A = [−0.7, 0, 0.4, 0, 0, 0]>, B = [−0.7, 0, 0.4, π/4, 0, 0]>,
C = [−0.7,−0.5, 0.35, 0, 0, π/4]>, D =
[−0.7, 0.5, 0.4, 0, 0, 0]>, E = [−0.35, 0, 0.35, 0, π/8, 0]>

and F = [−0.5, 0, 0.35, 0, 0, 0]>, corresponding to desired
setpoints for the object’s pose xo = [p>o , η

>
o ]>. More

specifically, φ requires the object to assume a sequence of
poses in the respective time intervals, as dictated by φi,
i ∈ {1, . . . , 5}. The STL tasks are encoded as follows,

h̄(xo, t) = [h̄1(xo, t)), . . . , h̄6(xo, t))]
> =

(
1

1+exp(−20(t+0.1)) −
1

1+exp(−20(t−6.1))

)
‖xo −A‖(

1
1+exp(−20(t−6.1)) −

1
1+exp(−20(t−20.1))

)
‖xo −B‖(

1
1+exp(−20(t−20.1)) −

1
1+exp(−20(t−45.1))

)
‖xo − C‖(

1
1+exp(−20(t−45.1)) −

1
1+exp(−20(t−60.1))

)
‖xo −D‖(

1
1+exp(−20(t−60.1)) −

1
1+exp(−20(t−75.1))

)
‖xo − E‖(

1
1+exp(−20(t−75.1)) −

1
1+exp(−20(t−90.1))

)
‖xo − F‖


.

The object is initially fixed at [−0.7, 0, 0, 0, 0, 0]>. The
parameters of the performance functions are chosen as γ0

h =[
5.5 69.32 466.5 8.8× 105 2.3× 108 2.3× 1010

]
,

γ∞h =
[
2.2 4 2.5 2.2 3 3

]
, l =[

0.35 0.35 0.2 0.25 0.3 0.3
]

and the control
gains as gs = diag{10, 10, 20, 10, 10, 10} and
gv = diag{5, 5, 10, 5, 5, 5}.

The experimental results are shown in Figure 2, 3a and
Figure 3b. Figure 2a, 2b show the position and orientation,
respectively, of the object executing the STL formula φ.
Figure 2c depicts the control input of one of the robots,
which is identical to the second robot’s. Figure 3a illustrates
the evolution of the predicate functions hi(xo, t), along with
the respective performance functions that correspond to the 6
sub-formulas in φ. One can easily conclude that φ is satisfied.
Note that, for better visualization, the activation functions
and the nonactive hi(xo, t) are not shown in Figure 3a.
Figure 3b depicts the evolution of ξv(t) which respects ξv ∈
(−1, 1) and is thus inside the prescribed velocity funnels.
Compared to existing results [16], the experiments here can
handle a richer STL fragment and define tasks to exploit
all the 6 degrees-of-freedom of the system. Additionally, the
dynamics are assumed to be unknown and we avoid any
approximations when considering disjunctions.



0 10 20 30 40 50 60 70 80 90
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4
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(c) Control input to the robots u(t)

Fig. 2: Results pertaining to an experimental run of the setup in Fig. 2 satisfying φ
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(a) Evolution of hi(xo, t)(in
blue) and performance functions
γi(t)(in red) for i = 1, . . . , 6.
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(b) Evolution of normalised ve-
locity errors ξv(t)

Fig. 3: Experimental evolution of the funnels and velocity
error

VI. CONCLUSION

We provide an algorithm for cooperative manipulation
subject to STL tasks. In particular, we translate the STL
tasks to PPC constraints, and we provide a decentralized
control protocol for the robotic arms manipulating the object.
We validate our results by performing experiments on two
manipulator arms grasping an object. The flexibility in the
design of performance functions provides the user with
greater control over accuracy and robustness of the system.
Future work consists of considering task infeasibilities and
rolling contacts, as well as experiments using mobile bases.
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