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Abstract— Optimal path planning often suffers from getting
stuck in a local optimum. This is often the case for mobile
manipulators due to nonconvexities induced by obstacles and
robot kinematics. This paper attempts to circumvent this issue
by proposing a pipeline to obtain multiple distinct local optima.
By evaluating and selecting the optimum among multiple
distinct local optima, it is likely to obtain a closer approximation
of the global optimum. We demonstrate this capability in
optimal path planning of nonholonomic mobile manipulators
in the presence of obstacles and subject to end effector path
constraints. The nonholomicity, obstacles, and end effector path
constraints often cause direct optimal path planning approaches
to get stuck in local optima. We demonstrate that our pipeline is
able to circumvent this issue and produce a final local optimum
that is close to the global optimum.

I. INTRODUCTION

Optimal path planning for mobile manipulators is com-
monly done by formulating and solving a nonlinear pro-
gram (NLP) using gradient-based optimization approaches.
One major challenge with this approach is that, often, the
constraints introduced to the planning problem, such as
obstacle avoidance, end effector path constraints, etc., cause
the NLP to be highly non-convex. This causes gradient based
optimization approaches to only solve them to local optimal-
ity. While solving nonconvex NLPs to global optimality in
general is NP-hard, one potential mitigation is to generate
multiple distinct local optima and choose the best among
them. This increases the likelihood of actually finding the
global optimum. To this end, we introduce the notion of
”multi-locally optimal” solutions. We call a solution to an
optimization problem multi-locally optimal if it is the optimal
solution among multiple distinct local optima.

The challenge of obtaining a multi-locally optimal path is
computing multiple distinct local optima since most research
has only been on finding a single local optimum [1], [2].
Using the observation that the local optimum returned by
gradient-based optimization approaches usually stays within
the same homotopy class as the provided initial guess [3], we
propose a pipeline that first discovers homotopically distinct
paths and then uses them as initial guesses for an NLP.
This allows for generating multiple distinct local optima, and
subsequently finding the multi-local optimum. Generating
and optimizing these homotopically distinct initial guesses
is the primary focus of this work.
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Fig. 1: Mobile manipulator executing three homotopically
distinct locally optimal paths given a desired end effector
path. Blue shows the desired end effector path, green and
red shows computed the elbow and base paths respectively.

We apply our pipeline to the path planning of mobile
manipulators consisting of a 6-revolute(6R) elbow manipula-
tor attached to a nonholonomic differential drive base. This
form was chosen for its cost-effectiveness and versatility. We
further require that the end effector follows a predetermined
path. Such end-effector path constraints arise naturally in
applications such as painting or wiping a table.

The contribution of this paper is the development of a path
planning pipeline for nonholonomic mobile manipulators that
handles end effector path constraints and produces a multi-
locally optimal solution. To this end, we propose a method
for generating a low dimensional configuration graph to
be used with the Neighborhood Augmented Graph Search
(NAGS) algorithm [4]. Additionally, we modify NAGS in
order to leverage the specific structure of the configuration
graph for improved accuracy. Furthermore, an NLP is for-
mulated to produce distinct locally optimal paths from the
guesses provided by the modified NAGS algorithm. Finally,
the effectiveness of each of the stages is demonstrated
with simulation results along with a comparison study with
existing methodologies.

The remainder is organized as follows. In Section II,
related work is reviewed, and in Section III, the problem
under consideration is stated. Section IV presents the pro-
posed planning pipeline in detail, and Section V presents
some experimental results demonstrating the efficacy of our
pipeline. Section VI discusses our approach and draws a
conclusion.

II. RELATED WORK

A. Mobile Manipulators

Path planning for mobile manipulators has been widely
studied. The survey [5] provides a comprehensive overview
on mobile manipulators planning algorithms. We highlight a



Fig. 2: Given the grey obstacle, p1 and p2 belong to the
same H-class (homotopically equivalent) while p2, p3, p4
all belong to different H-classes (homotopically distinct).

few results in the context of planning with end effector path
constraints on nonholonomic mobile manipulators.

A rapidly exploring random tree (RRT) [6] based approach
is introduced in [7] that handles constraints via tangent
space projection. This has been further generalized and
incorporated into OMPL [8]. Such sampling approaches can
often be postprocessed to produce a locally optimal path. A
genetic algorithm is proposed in [9] which is probabilistically
optimal but may take excessive amounts of time to achieve
global optimality. An inverse kinematics (IK) based method
is proposed in [10] which produces a locally optimal solution
greedily. None of these approaches provide a guaranteed way
of discovering more than one distinct local optimum.

B. Optimal Path Planning

Trajectory optimization is a commonly used technique in
optimal path planning. This involves formulating the path-
finding problem as a mathematical program with costs and
constraints, which is then solved with an optimizer. This
field is well studied with many successful algorithms such as
CHOMP [1] and TrajOpt [2]. Both of these approaches use
a direct transcription based technique [11], which involves
discretizing the trajectory into a fixed number of discrete
samples. These approaches generally scale well with the
number of decision variables and constraints. However, the
presence of nonconvex constraints and a nonconvex cost
function only leads to locally optimal results.

C. Topological Path planning

This focuses on finding and quantifying paths based on
their topological features. Often, the feature of interest is a
path’s homotopy class (H-class) within a robot’s configura-
tion space. Paths of different H-class cannot be smoothly de-
formed into each other without colliding with obstacles (Fig.
2). Many probabilistic methods for finding homotopically
distinct paths have been proposed [12]–[15]. However, they
generally scale poorly to high dimensions. As such, using
a lower dimensional or simpler topological path planning
setup for high-level global planning followed by optimal
path planning approaches for local refinement is a common
approach to combine the best of both worlds. This pipeline is
effective in generating optimal trajectories for mobile ground
robots [16], [17], quadrotors [18] and manipulators [19],
[20].

For applying this topological and optimal path planning
pipeline to mobile manipulators, a major problem is the
determination of H-class, which is a highly non-trivial task

that becomes increasingly complex for high-dimensional
configuration spaces. In [4], a novel Neighborhood Aug-
mented Graph Search (NAGS) algorithm has been recently
proposed that allows finding topologically distinct paths in
higher dimensions. In our work, we leverage a modified
version of NAGS to identify homotopically distinct paths
for a simpler, lower-dimensional problem and use optimal
path planning for the local refinement of the full-dimensional
original problem.

III. PROBLEM FORMULATION

The path planning problem concerns a 6-degree-of-
freedom(DoF) elbow manipulator attached to a nonholo-
nomic differential drive mobile base. The base is charac-
terized by its position xb = [x, y]T ∈ R2 and orientation
θ ∈ S1. The base motion is governed by

ẋb =

[
cos θ
sin θ

]
v, θ̇ = ω (1)

where v ∈ R is the linear and ω ∈ R is the angular velocity.
For ease of notation, define xb⊥ = [xb, 0]

T = [x, y, 0]T .
Given the base position xb, the arm is characterized by its
elbow position xw ∈ R3 and end effector position xe ∈ R3,
both in world cartesian coordinates. Let l1 be the upperarm
length and l2 be the forearm length. The elbow and end
effector positions are subject to

∥xw − xb⊥∥2 = l1

∥xw − xe∥2 = l2

∃a, b ∈ R : xw − xb⊥ = a(xe − xb⊥) +
[
0 0 b

]T (2)

This describes the arm kinematics. In particular, the last
constraint states that base, elbow and end effector positions
projected to the xy-plane are collinear. This reflects the fact
that the upperarm and elbow cannot roll. The dynamics of
the arm is given by

ẋw = c, ẋe = g (3)

where c ∈ R3 is the elbow and g ∈ R3 is the end effector
velocity.

Given the base and arm kinematics and dynamics above,
the robot configuration q can be fully defined by

q =
[
xTb θ xTw xTe

]T
subject to the aforementioned constraints.

Obstacles are assumed to be defined via an obstacle
function obs(q) which returns True if and only if the given
robot configuration q is colliding with an obstacle.

A desired end effector path xe(t) with t ∈ [0, 1] being the
path parameter representing an auxiliary time normed to the
interval [0, 1] is given. The planning problem, then is to find
a feasible path, satisfying kinematic and dynamic constraints,
that does not collide with obstacles and minimizes∫ 1

0

v(t)2 + ω(t)2 + c(t)2dt (4)

The final solution will be of the form Q = {q(t0), q(t1),
. . . , q(tT )}, t0 = 0, tT = 1 with ti equally spaced and T
being the number of path samples.
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Fig. 3: The planning pipeline

Algorithm 1 Pipeline for finding multi-locally optimal paths

Require:
@xe: [0, 1] → R3: Desired end effector path
n: Number of distinct local optima to evaluate
dt: Optimization timestep interval
T : Number of optimization timesteps

1: function FINDPATH(@xe, n, dt, T )
2: G = (V,E) := ConfigurationGraphGeneration(xe)

3:


(x◦b1, x

◦
w1, t

◦
1)

(x◦b2, x
◦
w2, t

◦
2)

...
(x◦bn, x

◦
wn, t

◦
n)

 := modifiedNAGS(G,n)

4: for all i ∈ 1 . . . n do ▷ can be run in parallel
5: (costi, Q⋆

i ) := TrajOpt(x◦bi, x
◦
wi, t

◦
i , dt, T )

6: i⋆ := argmini(costi)
7: return Q⋆

i⋆

IV. METHODOLOGY

The proposed planning pipeline consists of four main
steps, illustrated in Fig. 3 and Algorithm 1.
(A) First (line 2), we generate the collision-free config-

uration space graph (CG). Each vertex of the graph
represents a collision-free robot configuration, and each
edge represents a collision-free transition between con-
figurations.

(B) Then (line 3), we apply a modified NAGS algorithm,
adapted from [4], which takes as input the CG and finds
a pre-specified number of homotopically distinct paths
within the graph.

(C) Next (line 4-5), the homotopically distinct paths are
converted into initial guesses and the trajectory opti-
mization problem is solved for each guess.

(D) Finally (line 6-7), we compare the optimized paths from
the different initial guesses and choose the best path.

A. Configuration Graph Generation

The goal of this step is to transform the high-dimensional
continuous space of collision-free robot configurations into
a low-dimensional discrete graph for the subsequent NAGS
algorithm. We reduce dimensionality as follows: Firstly, the
base heading and nonholonomic constraints are ignored at
this stage. Secondly, the dimensionality is further reduced by
a change of coordinates from [xb, xw, xe]

T ∈ R2 ×R3 ×R3

to [xb, t, w]
T ∈ R2 × [0, 1] × {−1, 1} by incorporating the

end effector path constraint. To see this, notice that xe is

(a) (b) (c)

Fig. 4: Illustration of King’s graphs. (a) Connectivity of a
vertex in a 2D King’s graph. (b) Exterior view of a 3D King’s
graph. (c) Connectivity of a vertex in a 3D King’s graph.

fully defined by the path parameter t. Furthermore, given xb
and xe, there only exists two feasible elbow positions: elbow
up and elbow down, represented by w = 1 and w = −1
respectively, with w ∈ {−1, 1}. This parametrization reduces
the configuration space dimensionality allowing for a simpler
configuration graph and thus better runtime performance.
In the remainder of this section, we abuse notation and
use [x, y, t, w]T and [xb, xw, xe]

T interchangeably with the
understanding that the former can always be mapped to the
latter via common IK procedures [21].

The configuration graph (CG) is given by G = (V,E)
where V is the set of vertices and E is the set of undirected
edges.

Beginning with V , vertices are defined via a discretization
of the configuration space (x, y, t, w) ∈ R2 × [0, 1] ×
{−1, 1} by predefined discretization intervals ∆x,∆y,∆t.
This discretization determines the resolution of the graph
and should be chosen based on the size of the smallest
obstacle. The set of base positions (x, y) ∈ R2 which
were originally unbounded, is also replaced by a bounded
(x, y) ∈ [−xmax, xmax] × [−ymax, ymax] for some xmax and
ymax, defining the bounds of the base position. Then, we
define the discretized bounded configuration space as

C := {−xmax,−xmax +∆x, . . . , xmax}
× {−ymax,−ymax +∆y, . . . , ymax}
× {t : 0,∆t, . . . , 1} × {−1, 1}

Furthermore, given the upperarm link length l1 and forearm
link length l2, the distance between the base and end effector
cannot be greater than the full arm length (l1+ l2). As such,
we define V as

V = {(x, y, t, w) ∈ C :∥[x, y, 0]T − xe(t)∥2 ≤ l1 + l2

∧ ¬obs(x, y, t, w)}

Notice that for each t, [x, y, 0] describe a disk centered at
xe(t) with radius l1 + l2.

Edges between vertices represent possible transitions be-
tween the robot configurations. An edge e = (v1, v2)
between a pair of vertices v1 = (x1, y1, t1, w1) and v2 =
(x2, y2, t2, w2) is in E if either of the following hold

1) kgc(v1, v2) ∧ ¬obs(v1, v2) ∧ (w2 = w1)
2) kgc(v1, v2) ∧ ¬obs(v1, v2)

∧ (w2 ̸= w1) ∧ ∥[x1, y1, 0]T − xe(t)∥2 = l1 + l2



Fig. 5: An example of a CG with end effector path defined
by xe(t) = [t, 0, 0]T

where kgc, the King’s Graph Condition, is defined as

kgc(v1, v2) = True ⇐⇒
∃α ∈ {−1, 0, 1},∃β ∈ {−1, 0, 1},∃γ ∈ {−1, 0, 1}
: (x2 = x1 + α∆x) ∧ (y2 = y1 + β∆y) ∧ (t2 = t1 + γ∆t)

The King’s Graph Condition expresses the connectivity of
a 3D King’s graph with axis x, y, t, analogous to the 2D
King’s graph in Fig. 4a. The function obs(v1, v2) checks
whether any robot pose between v1 and v2 is in a collision,
formally

obs(v1, v2) = True ⇐⇒
∃α ∈ [0, 1] : obs(αv1 + (1− α)v2) = True

In practice, this is checked for a finite discretization of α.
The condition 1) expresses that, within the same elbow

configuration, vertices are connected in the manner of a 3D
King’s Graph. The condition 2) expresses that connections
across elbow configurations only occur at the joint singu-
larity, when ∥[x1, y1, 0]T − xe(t)∥2 = l1 + l2. This can be
visualized as each disk having two separate sides, the top side
corresponding to w = 1 and the bottom side corresponding
to w = −1. These two sides are separate except at the
boundaries where they meet.

An example CG is illustrated in Fig. 5 with an end effector
path constraint of the form xe(t) = [t, 0, 0]T . As t increases,
xe(t) moves in the +x direction which creates disks that
move alongside in the +x direction.

The edge cost of the CG represents the cost of transi-
tioning from one robot configuration to another. The edge
cost d(v1, v2) between two vertices v1 = (x1, y1, t1, w1) and
v2 = (x2, y2, t2, w2) is defined as the Euclidean distance
along the (x, y, t) directions as follows:

d(v1, v2) =
√

(x2 − x1)2 + (y2 − y1)2 + (t2 − t1)2

The cost on end effector motion t is to avoid back and forth
motions along the end effector path incurring no cost.

B. Modified Neighborhood Augmented Graph Search

Our approach is based on NAGS [4, Algorithm 1]. The
main idea behind it is to add the notion of homotopic
equivalence to Dijkstra’s Algorithm [22]. This is done by
using a vertex’s path neighborhood set (PNS), which is
computed by running a reverse A* search [23] on the graph

(a) (b) (c) (d)

Fig. 6: Two paths starting from the yellow vertex and ending
at the green vertex, their PNSes marked black and white,
along with a blue obstacle. (a) Homotopically equivalent
paths have overlapping PNS. (b) Homotopically distinct
geodesic paths have non-overlapping PNS. (c) Having r too
large causes false negatives. (d) Having r too small causes
false positives.

(a) (b) (c) (d)

Fig. 7: (a) shows the underlying CG. (b)-(d) shows various
iterations of NAGS. Green is the starting vertex. Yellow is
the vertex ζ. P(ζ) is circled in red.

for a fixed search depth r from the vertex in question back
to the starting vertex. The key to the algorithm is that the
PNS is an approximation of the path tangent and can be
used to differentiate between homotopically distinct paths.
This is illustrated in Fig. 6a and 6b. We refer the reader to
[4, Algorithm 1 and 3] for further details.

The usage of PNS has the problem that the search depth r
has to be fine-tuned depending on the underlying graph
structure and obstacle size to ensure that it correctly identifies
homotopically distinct paths. Fig. 6c and Fig. 6d show
potential situations where false negatives and false positives
may occur. This is because the PNS is only calculated once
per vertex and does not get updated as the connectivity of
that vertex changes.

This fine-tuning is required because the original NAGS
algorithm makes no assumption on the graph structure.
However, due to the King’s-graph-like structure of our con-
figuration graph generated in the previous section, we can
specialize the NAGS algorithm to exploit this structure for
improved accuracy.

Our modifications are based on the following observation
regarding the NAGS Algorithm on a King’s Graph: Given
a NAG vertex ζ and the current state of the NAG GN =
(VN , EN ), define the parent set (PS) of ζ as follows

P(ζ) := {ψ : ∃(ζ, ψ) ∈ EN}

Observe that as NAGS updates GN in the absence of
obstacles, the first vertex ψ added to P(ζ) must be on the
shortest path to ζ. Any subsequent vertex added to P(ζ) must
be adjacent to an existing vertex in P(ζ). This is illustrated
in Fig. 7.

Thereby, we motivate the use of PS as an alternative to



Algorithm 2 Parent Set (PS) Computation

Require:
ζ: Vertex to compute PS for
GN : Current NAG GN = (VN , EN )

1: function COMPUTEPS(ζ, GN )
2: P := {ψ : ∃(ζ, ψ) ∈ EN}
3: return P

PNS, replacing [4, Algorithm 3] with Algorithm 2. The
PS of a vertex is updated whenever an edge is added to
the vertex. We further update the equivalence relation (≡)
between vertices of the NAG GN = (VN , EN )

ζ1 ≡ ζ2 ⇐⇒ ζ1.cg = ζ2.cg

∧ ∃ψ1 ∈ P(ζ1), ψ2 ∈ P(ζ2) : (ψ1, ψ2) ∈ EN

where ζi.cg retrieves the CG vertex represented by NAG
vertex ζi. This says that two vertices in a NAG are equivalent
if they correspond to the same CG vertex and if their PS are
adjacent.

The PS improves upon the PNS in two key ways. Firstly, it
is equivalent to generating the PNS with r = 1 meaning it is
equal to the smallest possible PNS. This avoids the problem
illustrated in Fig. 6c. Secondly, the PS continuously expands
as new homotopically equivalent vertices are discovered.
This expansion allows subsequent homotopically equivalent
vertices to have adjacent PSes, mitigating the problem of
false positives in Fig. 6d.

With the modified NAGS algorithm, we can more effec-
tively find a pre-specified number of homotopically distinct
paths. These can then be used as initial guesses for the
subsequent trajectory optimization.

C. Trajectory Optimization

The goal of this step is to use the results from the previous
section to refine the path, considering all constraints of
the original planning problem. In addition to including the
base heading and the nonholonomic constraints, a finer time
discretization is used to ensure that constraints are satisfied
more precisely. The trajectory optimization problem is given
as

min
xb[k],xw[k],θ[k]
v[k],ω[k],∆xw[k]

T∑
k=0

∥v[k]∥22 + ∥ω[k]∥22 + ∥∆xw[k]∥22 (5a)

s.t. ∥xw[k]− xb[k]∥2 = l1, (5b)
∥xw[k]− xe[k]∥2 = l2, (5c)

xw[k]− xb[k] = a(xe[k]− xb[k]) +

00
b

 ,
(5d)

xb[k + 1] = xb[k] +

[
cos θ
sin θ

]
v[k]dt, (5e)

θ[k + 1] = θ[k] + ω[k]dt, (5f)
xw[k + 1] = xw[k] + ∆xw[k]dt, (5g)
obs(xb[k], xw[k], xe[k]) = False (5h)

(a) Planning Problem 1 (b) Planning Problem 2

Fig. 8: The planning problems

The objective (5a) is to minimize the discretized cost in
Eq. 4. This is subject to (5b)-(5d) which enforce the kine-
matic constraints in Eq. 2, and (5e)-(5g) which enforce the
dynamic constraints in Eq. 1 and 3. Finally, (5h) enforces
collision avoidance at each timestep.

D. Evaluate Local Optima

The final step is to compare and select the least cost
path among the locally optimal paths from the previous
step. Formally, given the locally optimal trajectories Q⋆

i and
associated costi for i ∈ {1, . . . , n}, index i⋆ of the trajectory
with the least cost is given by

i⋆ := argmin
i
(costi)

The multi-locally optimal path is then Q⋆
i⋆ which is the

optimal path among the local optima {Q⋆
1, . . . , Q

⋆
n}.

V. RESULTS

In this Section, we validate our pipeline in two ways:
• We show that our pipeline1 can generate multi-locally

optimal paths.
• We show that our CG generation and modified NAGS

algorithm outperforms OMPL’s constrained motion
planning [8] in generating homotopically distinct initial
guesses.

We consider the planning of a mobile manipulator in the
form of a Kinova Gen3 robot arm attached to a Turtlebot 4,
tasked with cleaning a counter table with a sine wave motion
while avoiding collisions with the table itself and the bar
chair nearby (Fig. 8a). For this problem, the aim is to find the
multi-locally optimal path among three distinct local optima.

We generate the CG by discretizing the end effector path
at 0.05m (5cm) intervals. The base position is discretized at a
resolution of 0.1m. Edges in the CG are subsampled at 0.01m
for collision checking. The final CG took 0.895s to generate.
NAGS took 2.353s to generate three homotopically distinct
paths, each belonging to a different H-class, arbitrarily
labelled with 1-3, shown in Fig. 9. For the NLP, we chose
T = 200 and dt = 0.2. Without an initial guess, the
optimizer failed to solve the NLP. Using the distinct paths as
initial guesses, the optimizer was able to generate 3 distinct
local optima, shown in Fig. 10. A snapshot of the mobile
manipulator executing the path is given in Fig. 1. The NLP

1https://github.com/rcywongaa/topologically_
distinct_guesses

https://github.com/rcywongaa/topologically_distinct_guesses
https://github.com/rcywongaa/topologically_distinct_guesses


(a) H-class 1 (b) H-class 2 (c) H-class 3

Fig. 9: Results of NAGS

(a) H-class 1 (b) H-class 2 (c) H-class 3

Fig. 10: Results of optimizing NAGS guesses

took, on average, 88.7s to solve. The path in H-class 1 had
the lowest cost, making it the multi-locally optimal path.

A. Comparison with OMPL

We now offer a brief comparison between our CG and
modified NAGS algorithm and OMPL’s constraint planning
implementation [8] with respect to their ability to generate
homotopically distinct initial guesses. We evaluate this based
on three criteria:

• Time required to generate the pre-specified number of
homotopically distinct paths

• Variance in time required to generate the paths
• Validity of the generated paths as initial guesses where

a path is a valid initial guess only if it allows the NLP
to be solved successfully

The OMPL planner and planning scenario is set up using
MoveIt [24], [25]. We use the KPIECE planner [26], an
RRT-based planner, for our constraint planning problem. This
choice is motivated by [8], which shows the KPIECE planner
has superior performance compared to other planners when
planning in high dimensional configuration space with end
effector constraints.

For the table cleaning scenario and with a path tolerance
of 0.05m (5cm), OMPL could not generate any path within
a timeout of 60s. Hence we compare a simpler scenario
illustrated in Fig. 8b. In this scenario, our pipeline and OMPL
are both tasked with finding four homotopically distinct
paths.

For our pipeline, we generate the CG by discretizing the
end effector path at 0.1m (10cm) intervals. Base positions
are also discretized at a resolution of 0.1m. Edges in the CG
are further subsampled at 0.01m for collision checking. The
final graph took 0.141s to generate. The average runtime for
NAGS is 0.496s. This generated four paths, each belonging
to a different H-class, arbitrarily labelled with 1-4 (see
Fig. 11).

For OMPL, we set a path tolerance of 0.05m, assuming the
worst-case violation for NAGS is half the path discretization

(a) H-class 1 (b) H-class 2 (c) H-class 3 (d) H-class 4

Fig. 11: Results of NAGS for the simple planning problem
belonging to different H-classes

(a) H-class 1 (b) H-class 2 (c) H-class 3 (d) H-class 4

Fig. 12: Results of OMPL constraint planning belonging to
different H-classes

interval. OMPL, on average, requires 17 attempts to generate
a path for each of the four H-classes. Example results from
each H-class are shown in Fig. 12. A detailed comparison is
provided in Table I. We see that our CG + modified NAGS
pipeline outperforms OMPL in terms of runtime, variance in
runtime and validity of generated paths.

VI. DISCUSSION & CONCLUSION

This paper presents a pipeline for nonholonomic mobile
manipulator path planning in the presence of end effec-
tor constraints that achieve multi-local optimality. This is
achieved by generating and optimizing homotopically dis-
tinct guesses and finally choosing the best among the local
optima. Experiments showed that our pipeline was able to
generate multi-locally optimal solutions for a fairly com-
plex table-cleaning scenario. Furthermore, the experiments
showed our scheme for generating homotopically distinct
paths outperformed the state-of-the-art motion planning li-
brary OMPL.

We note that, as with other graph-search-based algorithms,
our algorithm also suffers from the curse of dimensionality,
which would arise when applied to mobile manipulators with
higher DoFs. Also, since each obstacle produces at least
two homotopically distinct paths, the number of paths grows
exponentially with the number of obstacles, thus leading
to poor performance of the NAGS algorithm. As such, our
pipeline generally excels in scenarios where constraints can
reduce the dimensionality of the problem and where there
are a small number of large obstacles leading to a smaller
configuration graph. We argue that this can be seen as a
complement to sampling-based approaches, which generally
work well in the absence of constraints and with smaller,
more numerous obstacles.

Algorithm Avg. (stdev) runtime % valid guesses
CG + Modified NAGS 0.637 (0.011) 100
OMPL 29.9 (22.9) 58.3

TABLE I: Results of our modified NAGS algorithm and
OMPL constrained planning for the simple planning problem
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APPENDIX

A. Modified NAGS Algorithm

Algorithm 3 Modified NAGS Algorithm

Require:
qs ∈ V : Start configuration
NG: Neighbor/successor function for graph G
CG : V × V → R+: Cost function
@stopSearch: VN → {0, 1}: Stopping criteria
@computePS: V × (VN , EN ): parent set computation

Ensure: GN : Graph with costs and parent set for every
vertex

1: function SEARCHNAG(qs, NG, CG, @stopSearch)
2: vs := (qs, {qs}) ▷ start vertex in VN , with

self-reference in its path neighborhood set
3: g(vs) := 0 ▷ path distances
4: VN := {vs} ▷ vertex set
5: EN := ∅ ▷ edge set
6: Q := {vs} ▷ open list (heap data structure)
7: v := vs
8: while Q ̸= ∅ ∧ ¬stopSearch(v) do
9: v := (q, U) = argminv′∈Q g(v

′) ▷ heap pop
10: Q = Q− v ▷ heap pop
11: U ′ = computePS(v, (VN , EN ))
12: for all q′ ∈ NG(q) do
13: v′ := (q′, U ′) ▷ successor
14: g′ = g(v) + CG(q, q

′) ▷ distance for v′

15: if ̸ ∃w ∈ VN , with v′ ≡ w then ▷ new vertex
16: VN = VN ∪ {v′}
17: EN = EN ∪ {(v, v′)}
18: g(v′) = g′

19: Q = Q ∪ {v′}
20: v′.came from = v
21: else ▷ vertex already exists (w)
22: w = v′

23: EN = EN ∪ {(v, w)}
24: if g′ < g(w) ∧ w ∈ Q then ▷ update w
25: g(w) = g′

26: w.came from = v
27: w.U = U ′

28: return GN = (VN , EN )

The modifications to [4, Algorithm 1] are presented in
Algorithm 3, with changes highlighted in blue. The PNS is

https://underactuated.csail.mit.edu


(a) Non-uniformly discretized
CG with GH < GD+DB <
GE

(b) Simple bridged graph with
AB = BC = AD = DC =
BD

Fig. 13: Different graph structures

(a) Start (b) Visit G (c) Visit D

(d) Visit H (e) Visit A (f) Visit B

Fig. 14: Progression of the modified NAGS algorithm. Sub-
script indicates the parent of the vertex.

replaced with the PS in line 11.

B. Generalizing the modified NAGS algorithm to different
graph structures

With a few more modifications (highlighted in orange and
purple), we may generalize the modified NAGS algorithm to
more flexible graph structures illustrated in Fig. 13. This is
the version implemented for this paper.

1) Non-uniform discretization: Consider a non-uniformly
discretized CG in Fig. 13a where we wish to find homo-
topically distinct paths from vertex G to vertex F . Note that
there is only 1 homotopically unique path between G and F .
The modified NAGS algorithm proceeds as shown in Fig.
14. Consider the last step in Fig. 14f. P(FB) = {BD},
P(FH) = {HG}. Since ∄ψ1 ∈ P(FB), ψ2 ∈ P(FH) :
(ψ1, ψ2) ∈ EN , we have FB ̸≡ FH . Hence the algorithm
incorrectly determines that there are two homotopically dis-
tinct paths from G to F . This is due to the fact that the
modified NAGS algorithm (as well as the original NAGS
algorithm), adds a vertex to the NAG based on the parent
of that vertex. This motivates our changes in line 25-26 and
line 11-12. This ensures that vertices are added to the NAG
in the order of the cost to the vertex itself, rather than the
parent.

(a) Start (b) Visit A (c) Visit B (d) Visit D

Fig. 15: Progression of the modified NAGS algorithm. Sub-
script indicates the parent of the vertex. Dotted vertices
represent vertices in the heap.

Algorithm 4 Generalized Modified NAGS Algorithm

Require:
qs ∈ V : Start configuration
NG: Neighbor/successor function for graph G
CG : V × V → R+: Cost function
@stopSearch: VN → {0, 1}: Stopping criteria
@computePS: V × (VN , EN ): parent set computation

Ensure: GN : Graph with costs and parent set for every
vertex

1: function SEARCHNAG(qs, NG, CG, @stopSearch)
2: vs := (qs, {qs})
3: g(vs) := 0
4: VN := {vs}
5: EN := ∅
6: Q := {vs}
7: v := vs
8: while Q ̸= ∅ ∧ ¬stopSearch(v) do
9: v := (q, U) = argminv′∈Q g(v

′)
10: Q = Q− v
11: VN = VN ∪ {v} ▷ add vertex when visiting
12: EN = EN ∪ {(v, v.came from)}
13: U ′ = computePS(v, (VN , EN ))
14: for all q′ ∈ NG(q) : ∃w ∈ NG(q)∧ (q′, U ′) ≡ w

do ▷ handle equivalent vertices first
15: v′ := (q′, U ′)
16: g′ = g(v) + CG(q, q

′)
17: w = v′

18: EN = EN ∪ {(v, w)}
19: if g′ < g(w) ∧ w ∈ Q then
20: g(w) = g′

21: w.came from = v
22: w.U = U ′

23: for all remaining q′ ∈ NG(q) do
24: v′ := (q′, U ′) ▷ guaranteed new vertices
25: VN = VN ∪ {v′} ▷ do not add vertex here
26: EN = EN ∪ {(v, v′)}
27: g(v′) = g′

28: v′.came from = v
29: Q = Q ∪ {v′}
30: return GN = (VN , EN )

2) Triangulated/bridged graph structure [27]: Consider
the bridged CG in Fig. 13b with progression shown in Fig.
15. Note that there is only 1 homotopically unique path
between A and C. Consider the final step in Fig. 15d. Notice
that the order for visiting BD, DB , CB , CD is undefined as
they all have the same path cost. Furthermore, whether or not
CB ≡ CD depends on the order in which the four vertices
are visited. If CB and CD are visited before BD or DB ,
then CB ̸≡ CD. To tackle this nondeterministic behavior, we
prioritize processing equivalent vertices first (line 14) before
processing nonequivalent vertices (line 23).
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